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Abstract

Firms increasingly compete for scientific talent to drive innovation. While individuals’
productivity in an industrial setting is uncertain at the time of hire, firms can observe mea-
sures of academic productivity. However, because academia and industry operate under
different institutional logics, the scientists most productive in academia may not be those
most productive in industry. Using confidential administrative data on 40 cohorts of U.S.
PhDs linked to wage and publication records, I estimate individuals’ expected productivity
in both academia and industry, regardless of their actual sector of employment. I do so
using Marginal Treatment Effects and an instrument based on variation in firms’ demand
for PhDs upon graduation. I find that individuals’ academic and industrial productivity
are only moderately aligned (correlation=0.28), and that this alignment has declined over
time. In fields with weaker alignment, firms are more likely to hire candidates who are
subsequently laid off — despite these individuals displaying strong academic productivity
at graduation. I also find that individuals with higher industrial productivity require lower
wage premiums to work in industry. Together, the results suggest that relying on academic
productivity as a proxy for industrial potential can lead firms to hire individuals who both
underperform in industry and are more costly to recruit. Overall, this study shows that
evaluating scientists based on performance indicators developed in a different institutional
context can result in costly hiring mismatches for firms.
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1 Introduction

In recent years, firms’ demand for highly educated individuals with scientific and technical expertise
has surged, especially in knowledge-intensive sectors such as artificial intelligence and biotechnology
(Hiraiwa et al., 2025). This is reflected in significant changes in the allocation of highly trained
talent: in the United States, for example, the share of PhDs in Computer Science entering industry
rose from 33% in 2003 to 70% in 2023. This shift extends beyond early-career hires, as firms also
recruit senior faculty and, in some cases, entire research teams from academic institutions (Yue, 2024).
Hiring scientific talent is a high-stakes decision: wages are often high, and the costs of poor hiring
decisions can be significant. Yet, firms face substantial uncertainty because they typically cannot
observe how productive individuals will be in an industrial setting at the time of hire (Campbell, Coff
and Kryscynski, 2012). Scientists are rooted in academic environments through their training or early

professional experience, and firms must infer their potential from measures of academic productivity.

Academia and industry, however, operate under different institutional logics, characterized by distinct
objectives, performance metrics, and incentive structures (Gittelman and Kogut, 2003; Kaiser et al.,
2018; Merton, 1973; Stern, 2004; Stuart and Ding, 2006). Academia rewards intellectual autonomy
and novelty, while industry emphasizes execution under constraints and a focus on product-oriented
outcomes (Bikard, 2018). Hence, while some skills such as technical expertise or creativity are
valued in both sectors, others are more critical in one context than the other. For example, the
ability to work toward commercially valuable outcomes and meet deadlines is essential in industry
but less emphasized in academic settings, whereas theoretical depth and independent inquiry are more
important in academia (Agarwal and Ohyama, 2013; Evans, 2010; Sauermann and Stephan, 2013). As
a result, the scientists who would be the most productive in academia might not be those who would

be the most productive in industry.

This misalignment may create challenges for firms in evaluating scientific talent. First, it may
complicate the identification of high-potential workers. If academic and industrial productivity are
poorly aligned, relying on indicators of academic performance may lead firms to overlook candidates
with strong potential in industry, or to hire those whose skills are poorly matched to industrial needs
(Bidwell, 2011). Second, it may increase the risk of overpaying for weak matches. Designing
compensation packages that successfully attract high-performing scientists requires understanding
how academic productivity translates into industrial value (Roach and Sauermann, 2024; Stern, 2004).
Without this insight, firms risk overpaying for candidates who appear promising on academic metrics

but ultimately underperform in industry.

In this paper, 1 ask: To what extent does academic productivity reflect a scientist’s potential in an

industrial setting? How does this impact firms’ ability to hire high-performing scientific talent?



Conceptually, I characterize each individual by two productivity parameters: their productivity in an
academic setting, and their productivity in an industrial setting. Because different sectors may reward
different skills, individuals may be highly productive in one sector but not in the other. When academic
and industrial productivity are strongly correlated, academic productivity serves as a reliable proxy for
industrial productivity, enabling firms to make informed decisions about whom to select and target.
But when the correlation is weak or negative, academic productivity becomes noisy or misleading.
This increases the risk that firms may fail to identify individuals who would be highly productive
in industry and pay high wages to attract individuals with strong academic credentials but limited
potential in industry. Theoretically, the correlation between academic and industrial productivity
is ambiguous. While existing work emphasizes the divergent institutional logics of academia and

industry, others argue that sectoral differences may be overstated.

Answering my research questions requires estimating each individual’s productivity in both academia
and industry. This involves recovering two productivity parameters per individual, which goes beyond
standard approaches that focus on average treatment effects. This is empirically challenging for several
reasons. First, it requires detailed data about individuals’ employment and their productivity. Second,
because most individuals are only observed in one sector, I lack information on their productivity in
the sector they did not join. Third, sorting is not random because individuals are expected to self-select
into sector of employment based on unobserved earnings gains and preferences, which prevents me

from estimating counterfactual productivity using observed characteristics alone.

I address these challenges by using a confidential census of all STEM PhDs who graduated between
1970 and 2013 from an American university, with information about their employment at graduation.
To measure scientists’ productivity, I merge this dataset with a confidential administrative survey of
scientists conducted during their careers which provides information about their wages, as well as with
publication data from Web of Science. I use information about scientists’ wages as an empirical proxy
for individuals’ productivity (Agarwal and Ohyama, 2013; Campbell, Ganco, Franco and Agarwal,
2012; Carnahan et al., 2012), and publication records as a complementary measure of productivity in
academic settings (Bikard et al., 2019; Ding et al., 2010; Levin and Stephan, 1991).

I estimate Marginal Treatment Effects (MTE) of sector choice on empirical measures of productivity
- namely, wages and publications. This approach allows me to estimate each individual’s productivity
in both academia and industry, regardless of the sector they actually join. This method relies on an
instrument to account for endogeneity arising from individuals’ self-selection into sector. The first step
estimates each individual’s probability of entering industry based on observables and an instrument.
Among individuals with similar predicted probabilities, some are observed in academia and others
in industry. This variation allows me to trace academic and industrial productivity across different
values of the predicted probability of entering industry and, in turn, to recover each individual’s

expected productivity in both sectors. My instrument leverages plausibly exogenous variations in
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firms’ demand for field-specific scientific labor over time. Specifically, I use the year in which a PhD
student graduates to generate variation in their likelihood of entering industry, conditional on PhD

major and macroeconomic conditions (Arellano-Bover, 2024; Oyer, 2006).

My first set of results examines the extent to which academic productivity reflects a scientist’s
productivity in an industrial setting. Using individuals’ predicted earnings in academia and in industry,
I find that the correlation between academic and industrial productivity is 0.28. This implies that
academic productivity is only moderately informative about industrial productivity. For example,
individuals with above-median productivity in academia have a 62% probability of also being above-
median productivity in industry. On the other hand, individuals with below-median productivity in
academia have a 38% probability of having above-median productivity in industry. Using predicted
publications in academia instead of predicted earnings as a proxy for academic productivity yields a
correlation of 0.19, reinforcing the idea that academic productivity only partially reflects industrial
productivity. Moreover, this correlation has decreased by 40% between 1975 and 2010, implying
that academic productivity has become a less reliable predictor of industrial productivity over time,
a pattern consistent with broader shifts in the relationship between academic science and industrial

application (Arora et al., 2018).

My second set of results examines the consequences of the misalignment between academic and
industrial productivity for firms’ ability to hire high-performing scientific talent. Among those hired
into industry, 79% have above-median industrial productivity, while 21% fall below the median. To
explore whether such hires reflect evaluation challenges arising from the limited ability of academic
productivity to proxy for industrial potential, I leverage variation across PhD majors in the alignment
between academic and industrial productivity. I find that in majors where this alignment is weaker,
firms’ hires are more likely to have low productivity and to be laid off, consistent with firms facing
greater challenges in evaluating candidates. Heterogeneity analyses further suggest that evaluation
challenges are more pronounced in small firms and for R&D roles. Moreover, in majors with weaker
productivity alignment, low-performing hires are more likely to display indicators of academic pro-
ductivity at graduation, such as publications or degrees from top institutions. These patterns provide
suggestive evidence of an evaluation challenge with direct implications for hiring outcomes: when
academic productivity is a noisy proxy for industrial productivity, evaluating candidates based on
academic performance may lead firms to systematically select individuals whose skills do not translate

well into industrial value.

Finally, I estimate how much firms would need to pay to hire high-potential scientists. I begin
by analyzing stated preferences for job attributes and find substantial heterogeneity, even among
individuals with above-median industrial productivity. Those who would be highly productive in
industry but not in academia place greater emphasis on advancement opportunities, responsibility,

and salary, while those who would be highly productive in both sectors are more likely to prioritize



intellectual challenge and independence. I then use observed sorting outcomes and predicted earnings
in each sector to estimate the earnings premium firms must offer to attract scientific talent. The results
reveal substantial variation in compensating differentials: 40% of scientists would require a premium
equivalent to 3.8 times the academic wage to be indifferent between sectors, while 8% require no
premium and in some cases, appear willing to accept lower earnings to work in industry. Importantly,
scientists with high industrial potential tend to have weaker preferences for academia. As a result,
hiring individuals with above-median industrial productivity requires an earnings premium ranging
from 0.2 to 1.1 times the academic wage. This finding suggests that relying on academic productivity
not only increases the risk of hiring underperformers, but also raises hiring costs, as these individuals
often command higher wage premiums. Hence, firms’ evaluation practices have consequences both

for the identification of productive workers and for the risk of overpaying for weak matches.

This paper makes several contributions. First, it contributes to the strategic human capital literature
on the challenges firms face in hiring talent (Bidwell, 2011; Bidwell and Mollick, 2015; Coff and
Kryscynski, 2011). While most work has focused on workers’ mobility and retention, we still know
little about how firms hire under uncertainty about workers’ skills, as well as the downstream conse-
quences of these decisions for firms’ outcomes (Campbell, Ganco, Franco and Agarwal, 2012; Coff,
1997; Marx et al., 2009; Ng and Stuart, 2022; Sevcenko and Ethiraj, 2018; Starr et al., 2019, 2018). 1
show that when indicators of productivity originate from a different organizational environment, firms
may face challenges in evaluating individuals, even when those indicators are perfectly informative
about worker productivity in their original context. These challenges have tangible and costly implica-
tions for firms such as layoffs, especially in fields where cross-context productivity alignment is weak.
Methodologically, I decouple actual sorting outcomes from potential productivity in both sectors, an-
swering recent calls to consider counterfactual worker-organization pairings (Coff and Rickley, 2021).
I do so by applying Marginal Treatment Effects (MTE) (Brinch et al., 2017; Heckman and Vytlacil,
2007), an econometric approach that remains uncommon in the strategy literature, but is uniquely

suited to capture individual-level heterogeneity.

Second, this paper contributes to the innovation literature on how knowledge workers - and scientific
knowledge more broadly - shape firm performance (Baruffaldi and Poege, 2025; Gambardella et al.,
2015; Palomeras and Melero, 2010; Polidoro Jr and Theeke, 2012; Shvadron, 2023; Singh and Agrawal,
2011). Prior work has often treated scientists as a relatively homogeneous input into firms’ R&D
processes (Arora et al., 2024, 2025) or focused on individuals’ productivity within sectors (Azoulay
et al., 2017, 2011; Ganco, 2013; Ganco et al., 2015; Oettl, 2012). This leaves open questions about
the portability of talent across institutional environments (Agrawal, 2001). I show that the value of
scientific talent is both highly heterogeneous and dependent on the institutional context at stake. In
particular, my results show that the distinct logics of industry and academia fundamentally shapes

which individuals are productive where (Bikard, 2018; Conti and Visentin, 2015; Dasgupta and David,



1994; Sauermann and Roach, 2014; Stephan, 2012). Prior work has emphasized the importance of
identifying and pursuing external opportunities that align with a firm’s strategic goals (Arora and
Gambardella, 1994; Cohen and Levinthal, 1990; Tranchero, 2023). I show that this logic applies to
hiring decisions as well: leveraging scientific talent is not simply about acquiring any highly trained
individuals. Rather, it depends on firms’ ability to identify and attract those whose skills align with

the firm’s goals and organizational context.

The paper proceeds as follows. Section 2 introduces the conceptual framework. Section 3 presents
the estimation method. Section 4 discusses the empirical setting, data and measurement strategy.
Section 5 describes the research design. Section 6 reports the results. Section 7 shows additional

robustness analyses and Section 8 concludes.

2 Conceptual Framework

In this section, I develop a framework that recognizes productivity as sector-specific, resulting from
the interaction between individuals’ skills and the organizational context. A central feature of this

framework is that it decouples individuals’ productivity in each sector from their sorting outcome.

2.1 Hiring Under Uncertainty About Individuals’ Productivity

Human capital is widely recognized as a key source of competitive advantage, particularly in
knowledge-intensive sectors where individuals’ technical expertise, creativity and domain-specific
tacit knowledge drive organizational outcomes (Barney, 1991; Coff and Kryscynski, 2011; Coff,
1997). A central insight from this literature is that productivity is not solely a function of individuals’
skills, but also of how those skills interact with the organization itself, an idea often used to explain
firm-specific human capital (Lazear, 2009). From this perspective, individuals represent bundles of
skills accumulated through education, experience, and innate ability, whose value depends on the
organizational context in which they are deployed (Becker, 1962). That is, the value of human capital
is both individual-specific and context-dependent: the same person may be highly productive in one
setting and generate less value in another. As a consequence, hiring the right individuals - i.e., those
whose skills align with the organization’s unique environment - is the foundational first step in building

a valuable workforce that can generate competitive advantage (Kryscynski, 2021).

Hiring involves two related challenges: 1) identifying high-potential candidates and ii) designing
effective compensation packages . First, firms must select individuals whose skills will generate value
under their own systems, cultures, and demands (Cappelli, 2019; Huang and Cappelli, 2010). Yet,
at the point of hire, information about workers’ abilities and fit is typically limited, especially in
external hires (Bidwell, 2011; Coff and Kryscynski, 2011). What firms observe are often indicators,



such as credentials, publications, or past roles, which originate from outside the organization. As
a result, hiring becomes a problem of inference across contexts: firms must predict how someone
will perform in their own environment using information produced in another. This suggests that
evaluating workers across organizational boundaries may be difficult, especially when those settings
reward different skills, values, or work styles. Second, firms must design offers that successfully
attract high-potential individuals, without overpaying for individuals who might appear strong but are
ultimately misaligned with the firm’s needs (Prendergast, 1999; Roach and Sauermann, 2024). This
too hinges on understanding the relationship between productivity across contexts, in order to identify

whom to target and how much to offer.

2.2 Sector-Specific Productivity - A Simple Framework

To formalize the hiring challenges described above, consider two sectors of employment, academia
and industry, indexed by j € {A, I'}. Each sector j values a set of skills &7. Individuals are indexed by
1 and possess a certain level of skills valued by each sector, k:f . This determines their productivity in
each sector, P’. Each individual is characterized by their two-dimensional vector: (P, P!). Using
these pairs of values, I define ‘academia-specialists’ as individuals who are primarily productive in
academia but not in industry, ‘industry-specialists’ as individuals primarily productive in industry but
not in academia, ‘stars’ as individuals highly productive in both sectors and ‘modest achievers’ as
individuals relatively less productive than the others.! The higher Pz-j , the more productive individuals
are in sector j. This means that the most valuable workers for firms are ‘industry-specialists’ and

‘stars’.

Take the perspective of industry trying to hire. The joint distribution between P! and P} determines
the extent to which individuals who are highly productive in academia would also be highly productive
in industry. This relationship can be summarized by the correlation between P and P!. Figure
1 illustrates three stylized cases. When the correlation between P/ and P/ is negative (Figure 1a),
individuals tend to be either ‘academia-specialists’ or ‘industry-specialists’. When the correlation is
positive (Figure 1b), individuals tend to be either ‘stars’ or ‘modest achievers’. When the correlation
is zero (Figure Ic), individuals are present in the four quadrants. From industry’s perspective, this
correlation is central to both the evaluation and attraction of talent. When the correlation is high,
individuals’ productivity in academia provides reliable information about their productivity in industry,
enabling firms to make informed decisions about who to select and target. But when the correlation is
low or negative, individuals’ productivity in academia becomes noisy or misleading, raising the risk

that firms may fail to identify high-productivity candidates and overpay for individuals who appear

Note that my definition of ‘stars’ differs from works in which ‘stars’ are defined with respect to their productivity within
an organization or a sector (Agrawal et al., 2017; Carnahan et al., 2012; Hess and Rothaermel, 2011; Hsu and Kuhn,
2023; Liu et al., 2018; Oettl, 2012) irrespective of their productivity in other environments.



promising on academic metrics but ultimately underperform in industry.

2.3 The Institutional Logics of Industry and Academia

Theoretically, whether - and to what extent - productivity translates across institutional settings
is ambiguous. In Appendix C, I formally model the correlation between academic and industrial

productivity. Here, I summarize the main intuition.

The correlation between academic and industrial productivity depends on: the overlap in skills
that each sector rewards (demand-side) and how skills are bundled across individuals (supply-side).
The correlation will tend to be positive when: i) sectors primarily value a common foundation of
skills or ii) when they primarily value different skills, but individuals tend to possess both set of
skills. In contrast, the correlation will be negative when sectors primarily reward different skills, and
individuals typically possess one set of skills but not the other. I now discuss successively the skills
that industry and academia reward (demand-side alignment) and the structure of skill endowments

across individuals (supply-side distribution).

Researchers hired in both academia and industry, particularly for research or knowledge production
roles, are typically expected to contribute to innovation. As a result, both sectors value a common
set of foundational skills such as analytical reasoning, technical depth, and creativity, which support
problem-solving and innovation in a range of settings (Sauermann and Roach, 2014; Stern, 2004).
However, each sector is governed by its own institutional logic, which influences how productivity is
defined and what skills are rewarded (Gittelman and Kogut, 2003; Perkmann et al., 2013; Stuart and
Ding, 2006; Tartari and Breschi, 2012).

The academic reward system is anchored in reputation-based evaluation and open dissemination
of knowledge. These features are reinforced by a broader set of scientific norms - universalism,
communism, disinterestedness, and organized skepticism - that structure both behavior and status
within academic communities (Dasgupta and David, 1994). As such, the prevailing academic logic
emphasizes intellectual autonomy, peer recognition, and theoretical novelty. Researchers are expected
to pursue independent inquiry and produce original ideas (Hill and Stein, 2025; Merton, 1973). These
incentives reward skills such as originality, self-direction, deep expertise, and the ability to frame

contributions in ways that are compelling to scholarly audiences.

In contrast, industry emphasizes restricted disclosure, and the generation of knowledge that can be
privately appropriated and applied toward commercial ends. Knowledge workers in firms face time
and budget constraints and are expected to contribute to product development, process improvements,
or commercially valuable outcomes (Agarwal and Ohyama, 2013; Bikard, 2018; Sauermann and
Stephan, 2013). This institutional context rewards skills such as cross-functional teamwork, strategic

prioritization, responsiveness to feedback, and the ability to integrate scientific work into larger project
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pipelines or commercial goals under organizational and time constraints. As one executive at a major
technology company I interviewed said: “We don’t need brilliant thinkers - we need scientists who
can move fast, handle ambiguity, and deliver results.” Recent work has also highlighted a structural
shift: firms have moved away from upstream scientific research toward downstream development
and application (Arora et al., 2018). As firms reduce their engagement with basic science, the skills
required for success in corporate R&D may become increasingly distinct from those fostered in
academic environments. Overall, it remains unclear how much overlap exists in the skills each sector

rewards.

On the supply-side, the correlation between academic and industrial productivity also depends on
how skills are distributed across individuals. Even when sectors value distinct skill sets, academic
and industrial productivity may still be positively correlated if individuals tend to possess both types
of skills. Sector-specific skills need not be mutually exclusive: individuals may be naturally endowed
with both sector-specific skills or develop them in parallel, through diverse experiences or intentional
skill investments. However, when skill development is shaped by institutional incentives - such as
reward systems that prioritize theoretical contributions over application - individuals may specialize,
and productivity across sectors may be weakly or even negatively correlated. While direct evidence
on skill co-occurrence is limited, prior work suggests that scientists often make strategic trade-offs

based on what their environment rewards (Lazear, 2009; Sauermann and Roach, 2014; Stern, 2004).

In sum, the correlation between academic and industrial productivity is theoretically ambiguous.
This ambiguity reflects how institutional logics shape the valuation of skills, and the limited evidence
on how skills co-occur or trade off across individuals. Empirically estimating the relationship between
academic and industrial productivity is therefore essential to examine the challenges firms may face

in hiring scientific talent.

3 Empirical Framework

3.1 Parameters of Interest and Empirical Challenges

To estimate P* and P} as per Figure 1, I must recover two productivity parameters for each individual.
There are two main challenges in doing so. First, individuals join one of the two sectors, so |
only observe their productivity in academia or in industry.? Second, I cannot simply recover an
individual’s counterfactual productivity in the sector that they did not join by making inference based
on observable characteristics. This is because we expect individuals to self-select into sector of

employment based on unobserved characteristics (e.g., preferences) which might be correlated with

2Some individuals might be changing sector of employment during their career, allowing me to observe their productivity
in both sectors. However, this is a limited and selected sample.



their productivity. For example, individuals who self-select into industry may also be more productive
there than observationally similar individuals who remain in academia, leading to a problem of

selection on unobservables.

3.2 Estimation Technique

One standard approach to account for endogeneity arising from unobservable components is to estimate
Two-Stage Least Squares (TSLS) using an instrumental variable. However, this entails significant
limitations when trying to estimate separately P/* and P/: (i) TSLS estimates a difference between
two potential outcomes (i.e., PZ-I — PZA), rather than the two potential outcomes separately, and (ii)
TSLS identifies this effect only for a local subset of individuals - the compliers - rather than across
the full distribution. To recover P/ and P/ separately for each individual, I estimate instead Marginal
Treatment Effects (MTE) (Bjorklund and Moffitt, 1987; Cornelissen et al., 2016; Heckman and Vytlacil,
1999, 2007). MTE also relies on the use of an instrument, but provides a more general framework than
TSLS. I present here the main intuition behind the MTE estimation and refer the reader to Appendix

D for a more comprehensive discussion.

MTE relies on the same key ingredients as TSLS: i) an outcome (in this paper, productivity) ii)
an independent variable (joining industry at graduation)? and iii) an instrument. The first step of the
MTE estimation is similar to the first stage of a TSLS: I estimate the probability that individual ¢ enters
industry as a function of observed covariates X; and an instrument Z;. This yields a propensity score,

P(Z;, X;): the predicted probability that individual 7 joins industry given their values of X; and Z;.

The key insight of the MTE approach is that, conditional on the same propensity score, some
individuals are observed in industry and others in academia. This is because individuals differ in
unobserved ways (e.g., their preferences or comparative advantage) which influence sector choice
even among those with the same predicted likelihood of entering industry based on X; and Z;.
These unobserved factors, denoted by Up,, are assumed to be uncorrelated with the instrument
itself.# For each value of the propensity score P(Z;, X;) = p, individuals observed in academia
must have Up, > p and their average outcome informs us about E[PA|X; = x, Up, > p|. Similarly,
individuals observed in industry must have have Up, < p, and their average outcome informs us about
E[P!|X; = z,Up, < p|. By modeling observed outcomes as smooth functions of the propensity
score within each sector, we can estimate the expected potential outcome at each value of Up, i.e.,
E[PA|X; = z,Up, = u| and E[P!|X; = z,Up, = u]. Using individuals’ observed characteristics
and realized sector choice D;, I can infer their location in the unobserved heterogeneity distribution.

31 use sector joined at graduation because it allows me to estimate productivity trajectories from the beginning of
individuals® careers. However, the results have broader implications for how firms evaluate and attract talent throughout
the career.

4Up, is often called ‘unobserved resistance’ or distaste for treatment.



This allows me to generate corresponding predictions for individuals’ productivity in both sectors, i.e.,
E[P}|X;, D, pi] and E[P!|X;, D;, pi].

The assumptions needed for MTE are the same as for TSLS: relevance, exclusion and monotonicity.
In theory, itis possible to estimate MTE with no further assumption. However, this requires full support
of the propensity score for both those joining academia and those joining industry for all values of X,
which is rarely feasible in practice (Andresen, 2018). Following the literature, I impose a functional
form assumption of additive separability between observable and non-observable components which
enables identification of the MTE over the common support unconditional on X (Carneiro et al., 2011;
Cornelissen et al., 2016).

4 Setting, Data and Measurement

4.1 Data

I use individual-level data from three confidential files: (i) the Survey of Earned Doctorates (SED),
(i1) the Surveys of Doctorate Recipients (SDR) and (iii) the 2015 Survey of Doctorate Recipients
Bibliometric Research Data (SDR15-WoS). These surveys are conducted by the National Center for
Science and Engineering Statistics (NCSES) and cover individuals who received a PhD from an

American institution.>

The SED is an annual census of all individuals who graduated from a PhD in a given academic
year, conducted since 1958 (e.g., the SED 2010 is sent to all individuals who earned their doctoral
degree between 1 July 2009 and 30 June 2010).6 The response rate is about 90%, providing almost full
coverage of the population of individuals who receive their PhD in the United States in a given year.
The SED contains information about doctoral studies (e.g., PhD field of study and institution) as well
as information about previous education (e.g., bachelor and master). It also contains demographics
and background information (e.g., place of birth, gender, race, parental education, citizenship status).
Importantly for the analysis, the SED contains information about postgraduation plans (e.g., work,

postdoc, other study or training).

The SDR is a biennal panel survey of doctorate holders conducted since 1973 which contains
longitudinal data about individuals’ employment at the time of survey - i.e., during their career - such
as sector of employment, principal job activity and earnings. For each survey, the sample consists of
both individuals who were surveyed in previous SDR editions (as long as they are less than 76 years

old) as well as new doctoral graduates who earned their PhD since the last cycle. The response rate

SThese data are confidential and were accessed remotely through the National Opinion Research Center (NORC) Data
Enclave under a restricted-use license approved by the National Science Foundation (NSF).

SFor reference, about 55k research doctorates were awarded in the United States in 2020. This excludes recipients of
professional doctoral degrees, such as MD, DDS, DVM, JD, DPharm, DMin, and PsyD.
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is about 65%. Individuals can be surveyed several times during their career and hence might appear
in several SDR waves. While the SDR reports the institution name for individuals who work in the

academic sector, I am not allowed to access employer name for those who don’t.

In the years 2022/2023, the NCSES launched a new Research Data Infrastructure with the goal
of creating new linkages with external data. I take advantage of this effort by using a newly created
dataset that matches each individual surveyed in the SDR 2015 to their research output from graduation
until 2017, using information from Web of Science. This gives me individual-level information about
publication output produced between graduation and 2017 such as publications, top publications and
average number of citations in the first 2 or 5 years after publication. For each of these measures and
for each individual, I have access to aggregate values up to 2017 as well as more granular information
by bins of experience (e.g., publications produced during the PhD, publications produced during the
first 5 years post-graduation and so on).” Note that I do not have information at the publication-level

such as journal or citations.

I first match the SDR 2015 to the SDR15-WoS and the SED. This gives me information about
all individuals surveyed during their career in 2015 regarding their background, doctoral education,
employment plans at graduation and employment status in 2015, as well as publication output. I
then match this sample to the other SDR surveys I have access to (survey years 1995, 1997, 1999,
2001, 2003, 2006, 2008, 2010, 2013, 2017 and 2019) to retrieve all the information available about

individuals’ earnings during their career.

The initial sample contains 78,320 individuals. I restrict the analysis to STEM fields and exclude
individuals with a PhD in Humanities, Education, Business and Health due to limited observations.
I retain cohorts graduating in or after 1970 because of several changes in the way the SDR answers
are coded before that year. To assign individuals to a sector of employment at the start of their career,
I keep students with definite postgraduate commitments at graduation at the time of survey (71%)3
and exclude individuals who declare starting an internship, traineeship, clinical residency or military
service (3%). I also exclude individuals who do not start their career in the United States (12%).
Finally, because my estimation requires observing individuals’ productivity at least once in their initial
sector of employment, I drop individuals who are never observed working in their starting sector

(18%). I discuss the robustness of this last restriction in Section 7.

The resulting sample includes 22,609 unique individuals. Because the earnings outcome is a flow
and doctorate holders can be surveyed several times during their career, my sample contains 69,917

observations in total, meaning that I observe on average 3 earnings values per individual.

7T have counts of these measures for the 5 years before graduation and for bins of 5 years after graduation, starting for bin
of years 1 to 5 after graduation up to bin of years 46 to 50 after graduation.

89% are negotiating with one or more organizations, 18% are seeking a position but have no specific prospects, 1% are
joining another full-time degree and 1% declare ‘other’ plans.
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I refer to PhD major as the most granular field of study I have access to for each individual (e.g.,
Biology, Genetics, Biochemistry, Astronomy, Computer Engineering etc.). This is what students
choose to study. My dataset includes 58 distinct PhD majors. I classify these majors into 5 PhD
fields: Computer Sciences and Mathematics, Life Sciences, Physical Sciences, Social Sciences and

Engineering (see Figure A.1 for a list of PhD fields and majors).

4.2 Dependent Variables: Measurement of Productivity

From a theoretical perspective, the ideal measure of an individual’s productivity is their marginal
product of labor, i.e., the value they create for their organization. In practice, this is rarely observable
outside of narrowly defined production settings. The most widely used empirical proxy for productivity
is earnings (Campbell, Ganco, Franco and Agarwal, 2012; Rosen, 1981). Accordingly, I estimate
individuals’ earnings in academia and in industry as proxies for their sector-specific productivity. |
also use data on publication and estimate individuals’ publication output as a complementary measure
of academic productivity. However, note that earnings have the advantage of capturing overall
contributions - including teaching, administration, mentoring, and service - while publication output

is more closely linked to research-specific productivity.®

Earnings: Earnings correspond to the total earned income before deductions in the previous year. This
includes wages, bonuses, overtime, consulting fees and summertime teaching or research, and I have
access to several earnings observations per individual at different years of experience.® I transform
all values in 2015 US dollars. I winsorize observations below the 15! percentile and above the 99"

percentile.

Publications: 1 calculate the number of publications published after PhD graduation by subtracting the
number of publications published before graduation from the total number of publications published
by the individual until 2017.1 I winsorize observations below the 1°¢ percentile and above the 99"
percentile. Depending on the specification, I also use publications weighted with citations received

in the first 5 years of publication. While publication output is widely used as a measure of scientific

90One concern is that earnings in academia are often shaped by institutional pay scales and tenure-based salary progression,
which may compress wages by limiting variation across individuals. However, because my goal is to estimate relative
productivity within each sector, what matters empirically is the rank ordering of individuals, not absolute productivity
levels. While wage compression could attenuate observed differences, it is unlikely to meaningfully distort rank-ordering.
Moreover, academic earnings correlate positively with other indicators of productivity, such as publication counts, citation
impact, and research funding (Hilmer et al., 2015; Katz, 1973).
10To avoid contaminating the estimation of P/* and P/, I exclude earnings observations that occur after individuals switch
sectors - that is, earnings corresponding to the sector not initially chosen. The MTE framework identifies potential
outcomes by comparing individuals with similar propensity score who sorted into different sectors. Including post-
switching earnings observations from individuals who switch sectors would distort this estimation. For example, using
earnings in industry from someone who initially joined academia would improperly enter into the estimation of PZ-A. I
show in Section 7 that results remain similar when including all earnings observations.
1T only include publications that were articles, reviews or conference proceedings.
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productivity, its interpretation varies by sector. In academia, it arguably reflects performance incen-
tives and norms. In industry, however, publication behavior may be shaped by organizational policies,
intellectual property concerns, or strategic disclosure practices, rather than underlying research pro-
ductivity. As such, I use publications as a complementary measure of academic productivity, but rely

primarily on earnings to proxy for productivity in industry.

Patents: In the 1995, 2001, 2003 and 2008 survey waves, respondents report whether they have been
named as an inventor on any application for a U.S. patent and if so, how many applications list them.
Coverage is limited: only 3,599 individuals in my sample are observed in these waves. Hence, I use

the number of patent applications as a robustness measure of individuals’ productivity in industry.!?

4.3 Independent Variable: Measurement of Sector Joined

My main independent variable of interest is the sector that individuals join upon graduation. I first
assign each individual to three potential sectors: industry (business for-profit and self-employed),
academia (2-year and 4-year college or university and university-affiliated research institute) or Gov-
ernment (US or foreign government). My preferred treatment variable is an indicator variable equal
to 1 for individuals joining industry and O for individuals joining any other sector, i.e., academia or
Government (in the rest of the paper, [ will loosely refer to this treatment variable as joining industry vs

academia).!® Overall, among the 22,609 unique individuals in my sample, 21% are joining industry.

Note that 46% of individuals in my sample start their career in a postdoc position. For my main
results, I choose to assign individuals doing a postdoc to the academic sector for two main reasons.
First, if postdoc is considered as a first post-PhD employment, I should in theory assign individuals
to the sector where the postdoc is realized. While I do not have such information for individuals who
graduated between 1969 and 2003, only 2% of individuals who graduated in or after 2004 did so in
the private sector. If postdoc is rather considered as a continuation of PhD education, I should assign
individuals to the first sector they join after their postdoctoral studies. Unfortunately, while I observe
sector of employment for all individuals in my sample after PhD graduation, I cannot easily identify
the sector where individuals work right after finishing their postdoctoral studies because (i) I do not
know exactly when they finish their postdoc and (i1) I can’t easily proxy for the end of postdoctoral
studies because I do not necessarily observe individuals again in the early-part of the career, especially
for older cohorts. Nevertheless, I show in Section 7 that my results are robust to discarding the first 10
years post-PhD graduation of postdocs and using the first sector of employment where postdocs are

observed after these 10 years to define their sector of employment post-graduation. s

12The NCSES is currently matching all individuals in the SDR editions to their patent output. The final dataset should be
made available at the end of 2025.

3] show in Section 7 that results are robust to excluding the Government category (10% of the sample).

“The question started to be asked to individuals in 2004 onwards.

5T use 10 years as my threshold because Figure A.2 shows that the earnings curve of postdocs converges with the one of
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4.4 Descriptive Statistics

Figure A.3 shows the number of PhDs by cohort of graduation and PhD field in my sample. The
number of individuals increases with cohort of graduation, reflecting the increase in the number of
PhDs over time. Figure A.4 shows that about 20% of PhDs join the private sector upon graduation.
There is, however, substantial heterogeneity across fields as showed in Figure 2: about 50% of PhDs

in Engineering join the private sector, vs 10% in Life Science or Social Sciences.

Table 1 reports summary statistics at the individual level, by sector joined. Individuals who join the
private sector earn on average across the career 67k more per year than individuals who started their
career in academia. In a simple regression of logged earnings on sector of employment, controlling
for observable characteristics, Table B.1 shows that the earnings premium in industry is about 40%.
Individuals who join industry also publish on average 16 fewer publications between graduation and
the time of survey. In academia, 44% of individuals are female, vs only 29% in industry. Overall,
72% of individuals in my sample are Americans but a higher share of international students tend to

join the private sector at graduation than academia.®

Figure A.5 shows earnings as a function of career experience and sector joined. The earnings
curve in industry has a higher intercept but is less steep, so that earnings in both sectors look roughly
similar in the raw data towards the end of the career (Levin and Stephan, 1991). This pattern could
be due to differences in skill obsolescence (Deming and Noray, 2018), differences in ability and
preferences (Roach and Sauermann, 2010; Stern, 2004) and differences in physical capital investments
and complementarities between basic an applied scientists in industry vs academia (Agarwal and
Ohyama, 2013). Figure A.6 shows citation-weighted publications as a function of sector joined
and experience. The curve is upward sloping in academia and noisier in industry, likely because
individuals’ activity in industry is less homogeneous, with workers 1) not necessarily employed in

research and/or i1) working in firms that do not allow them to publish research results.

5 Research Design

To estimate individual 4’s productivity in academia, P/, and individual i’s productivity in industry,
P!, 1 estimate Marginal Treatment Effects as presented in Section 3. This method requires the use of a
variable to instrument for sector joined at graduation. This is because sorting is jointly determined by

firms’ and universities’ demand, as well as individuals’ self-selection. My strategy aims to leverage

individuals who start in academia without a postdoc at around 10 years of experience.

16] follow the classification of the SED and identify U.S. citizens as individuals who are either U.S. native born (68% of
my sample), U.S. naturalized (4% of my sample), U.S. unspecified (not present in my sample) or U.S. citizen assumed
for Puerto Ricans who did not report citizenship status (not present in my sample). Individuals who are not identified as
U.S. citizens can be non-U.S. immigrant permanent resident (5%), non-U.S. non-immigrant temporary resident (23%)
or non-U.S. visa status unknown (0.1%).
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variation in labor demand from firms versus universities at the time individuals graduate from their
PhDs.

Firms’ demand for PhDs fluctuates across years due to factors such as technological advancements
and shifts in R&D investment priorities (Toole and Czarnitzki, 2010). For instance, breakthroughs
in gene-editing technologies like CRISPR can lead to a surge in demand for PhDs in genetics and
biotechnology, as firms seek to explore new applications in agriculture and medicine. Similarly,
universities often adjust their hiring based on evolving hiring needs, academic priorities, funding
availability, and strategic research initiatives (Goolsbee and Syverson, 2023). As a result, PhD
students in the same major may face very different employment landscapes depending on the year
they graduate. Some cohorts face stronger relative demand from firms, others from universities. I use
this cohort-level variation in relative labor demand to construct my instrument, exploiting the fact that
timing of graduation shapes the likelihood of entering industry vs academia. This approach is similar

in spirit to Oyer (2006) and more recently to Arellano-Bover (2024).

Empirically, the instrument can be thought of as a vector of PhD major x PhD cohort fixed-effects,
controlling for PhD major fixed-effects.’” In practice, I create a leave-one out continuous equivalent
to reduce the risk of bias (Sampat and Williams, 2019). For each individual, the instrument Z; is

therefore equal to:

Zi:

Yo industryy x 1{m(?") = m(i)} x 1{c(i") = (i )} industry; M

2 H{m(i) = m()} x He(@) = e(i)} -

with ¢/ indexing individuals, industry; an indicator equal to 1 if individual 4 joins industry and O

otherwise, m(i) individual i’s PhD major and ¢(7) individual i’s PhD cohort of graduation.

To be valid, the instrument: (i) should not impact the outcomes directly (i.e., other than through its
impact on sector joined at graduation) and (i1) should not be correlated with unobserved factors that
also influence individuals’ sector choice, such as individuals’ skills or their preferences. Figure A.7
formalizes how these assumptions relate to key variables in a simple model. I discuss both assump-
tions successively considering the earnings outcome, but the discussion remains similar considering

publications.

Regarding (i), it is important to control for general macroeconomic conditions that would be cor-
related with both Z; and earnings. For instance, if I observe a large share of individuals starting
in industry for a specific major/cohort at a time where the economy is also at its best, earnings in
the private sector might appear high even though individuals would have enjoyed high earnings in

academia too. To mitigate this concern, I include a control for the unemployment rate at the time

T follow the literature and only keep PhD major x PhD cohort fixed-effects for which I have at least 10 observations
(Heckman, 1981).
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of PhD graduation which aims to control for general macroeconomic conditions when the individual
enters the labor force.'® T also control for field-specific changes in funding or opportunities that would

impact both sectors by controlling for field-specific federal funding the year of graduation.?

One threat to the exclusion restriction is that the instrument induces within-sector changes correlated
with it, such as shifts in employer or job characteristics. For example, if periods of strong industry
demand are concentrated among large, high-paying firms, the instrument would affect wages within
industry (not only the probability of entering industry). Likewise, if strong industry demand is
associated with a different occupation mix (e.g., more managerial roles), the instrument would alter
pay within a sector. While the exclusion restriction cannot be prover, I implement several falsification
tests presented in Table [awaiting export approval]. Within industry and within academia, I check that
employer size and job occupation are not correlated with the instrument. One another threat, specific
to the earnings outcome, relates to “hot-year wage premia", whereby graduation-year conditions may
raise (or depress) within-sector wage levels in a way that persists over time, even after controlling for
aggregate conditions. In Table [awaiting export approval], I check that wage observations (which are
observed during individual’s careers) do not correlate with the instrument. While these tests are only

suggestive, they provide some reassurance that the exclusion restriction might hold.

For assumption (ii) to hold, there should be no unobservable component that is correlated with
both the instrument and individuals’ sorting. In particular, this implies that individuals who are more
productive in industry (or said differently, who would be paid more in industry) do not systematically
graduate in years where firms’ vs universities’ demand is high. This assumption would break in the

following cases: strategic graduation; strategic entry; skill composition shifts.

First, one concern could be that individuals who would be paid more in industry strategically adjust
their PhD graduation year based on firms’ demand at graduation. For instance, if firms’ demand is low
at the time of graduation, these individuals could decide to defer their graduation hoping that demand
will be higher the year after. Similarly, high-potential earners in industry who should have graduated
the following year might rush to graduate to seize favorable opportunities. To test for this threat,
I use information about PhD entry year to calculate PhD duration and regress this variable on the
instrument.?? Table 2 Column (1) shows no significant correlation between the time that individuals
take to complete their PhD and firms’ vs universities’ demand. To account for potential offsetting
behaviors (some individuals extending, others rushing), I also run two similar regressions where the
outcomes are: an indicator equal to 1 if individuals’ PhD duration is strictly below the average PhD

duration of individuals with the same PhD major and PhD entry year combination and an indicator

8Source: https://fred.stlouisfed.org/series/UNRATE

YSource: https://www.aaas.org/programs/r-d-budget-and-policy/historical-trends-federal-rd

20PhD duration is calculated as the difference between PhD graduation year and PhD entry year. The number of observations
is slightly lower than the overall sample because some individuals did not report PhD entry year.
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equal to 1 if individuals’ PhD duration is strictly above the average PhD duration of individuals with
the same PhD major and PhD entry year combination.? Columns (2) and (3) show no significant
correlation. Overall, it does not seem that individuals systematically manipulate their graduation year

in a way that would be correlated with my instrument.

Another concern could be that high potential earners in industry are able to forecast industry demand
in following years and strategically time their PhD entry. I run two additional tests to examine this
threat. First, I regress the value of the instrument at graduation on the value of the instrument the
year before PhD entry.?? Table 2 Column (4) shows that there is no significant correlation, suggesting
that conditions at graduation are not correlated with conditions that individuals would observe at the
time they apply for a PhD. I also check whether market conditions the year before entry predict future

sorting. Column (5) shows no significant effect.

Finally, gradual shifts in skill composition across PhD cohorts could correlate with changes in firms’
versus universities’ demand. Said differently, even if individuals do not strategically time their PhD
graduation or entry based on anticipated market conditions, broader structural trends may lead to
changes in who enters particular fields over time. For example, if industry demand in certain fields
increases steadily, individuals with stronger industry-oriented skills may be disproportionately drawn
to those fields, altering the average skill composition of graduating cohorts. This concern is most
relevant in Computer Science, where industry placement rises towards the end of my sample - though
my dataset ends before the 2013 AlexNet breakthrough which likely accelerated this trend. I check in
Section 7 that my results are robust to the inclusion of five-year-window fixed-effects interacted with
PhD field. This allows me to compare individuals graduating within narrow time bands and mitigate

the risk of long-run shifts in skill composition.

Finally, another worry is that students from specific institutions have systematically different career
prospects or preferences. These differences might lead them to respond more or less strongly to firms’
demand. If these students also tend to have systematically higher earnings, failing to control for
doctoral institution could bias the estimates by conflating the effect of firms’ demand with institution-
specific factors that influence both sector choice and earnings. To mitigate this concern, I control
for doctoral institution with a vector of fixed-effects. In a similar fashion, I control for gender, race,

birthplace, citizenship and parental education.

Overall, any remaining threat to identification would require unobserved, time-varying shifts in the
composition of PhD graduates within a major that are correlated with fluctuations in relative labor

demand and not captured by my existing controls or addressed by my previous tests.

21The average PhD duration year for each individual in a field/cohort is calculated excluding the focal individual.
22This is because individuals apply to PhD programs usually the year before starting their program.
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6 Results

6.1 First-Stage

I run the following first-stage regression at the individual level:
industry; = o + 1Zi + 72Xi + v (2)

where industry; is an indicator equal to 1 if individual ¢ joins industry and O otherwise. Z; is the
instrument for individual 7, which is calculated at the PhD major x PhD cohort level. Following my
identification strategy, X; includes PhD major fixed-effects so that I rely on variation across years
within PhD major, as well as controls for the unemployment rate and field-specific federal funding at
the time of graduation. X; also includes a linear and quadratic terms to control for experience as |
observe individuals at different points in time during their career. It also includes an indicator equal
to 1 if the individual declares being female and O otherwise, an indicator equal to 1 if the individual
declares being white and 0 otherwise, an indicator equal to 1 if at least one of the individual’s parents
has a doctoral degree and 0 otherwise, an indicator for being an American citizen and 0 otherwise,
birth place fixed-effects and doctoral institution fixed-effects.?* Standard errors are clustered at the

PhD major x PhD cohort level since this is the level of variation of my instrument.

Figure A.8 shows an histogram of the instrument Z; which varies between 0 and 0.93 with a mean of
0.20. Table B.2 shows the first-stage regression: a 10 percentage point increase in firms’ vs universities’
demand increases the likelihood of joining the private sector by 3%, with a Kleibergen-Paap F-statistic
equals to 39. Figure A.9 shows histograms of the propensity score (predicted probabilities of joining
industry as a function of observables and the instrument), separately for individuals who join industry
and individuals who join academia. There is large overlapping support for the two groups, which helps
the MTE estimation by ensuring that individuals from both sectors are observed across a wide range of
predicted probabilities. The distribution of the propensity score is shifted to the right for individuals

who start in industry, reflecting their higher likelihood of joining the private sector.?4

6.2 Relationship Between Academic and Industrial Productivity

Figure A.10 presents the distributions of individuals’ predicted earnings in academia, which proxy for
their productivity in academia, and individuals’ predicted earnings in industry, which proxy for their
productivity in industry. I estimate these using a first-degree polynomial in the MTE specification and

show in Section 7 that my results are robust to other specifications. My estimations were performed

23Birth place is at the state level for individuals who are born in the U.S. and at the country level for individual who are
born outside of the U.S.

241 trim the thinnest tails of support (0.05% of the sample). This is to avoid extrapolation with very few observations and
improve robustness of the estimates. This represents 34 observations. Results are largely insensitive to this trimming.
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using the log of earnings, but values showed in Figure A.10 are transformed into thousands of dollars
for ease of interpretation.?> As expected, potential earnings in industry are generally higher than in

academia (118k on average vs 88k) and have higher variance (standard deviation of 44k vs 25k).

To what extent does academic productivity reflect a scientist’s potential in an industrial setting? To
answer this question, I first residualize each individual’s predicted earnings in industry and academia
by experience and its square. This step accounts for systematic earnings growth over the life cycle,
allowing for more meaningful comparisons across individuals at different career stages. I then average
these residualized values across observed periods to obtain a single productivity estimate per sector per
individual. This yields a pair of productivity measures for each person, one for academia and one for
industry. I then plot individuals’ industrial productivity against their academic productivity. Results
are showed in Figure 3a. I find a positive correlation between academic and industrial productivity
equal to 0.28. This indicates moderate alignment between academic and industrial productivity:
while academic productivity provides some information about a scientist’s potential in industry, it is a
relatively imprecise indicator. This result implies that an individual with above-median productivity
in academia has a 62% probability to also have above-median productivity in industry. Conversely, an
individual with below-median productivity in academia has a 38% probability to have above-median

productivity in industry.

To complement this result, I also proxy for academic productivity using publication output. Using
the same MTE approach previously applied to earnings, I estimate each individual’s publication count
in academia, weighted by citations. To make this measure comparable across individuals, I residualize
predicted publication counts by experience and field, given well-documented variation in publication
norms across disciplines. This provides a standardized, productivity-based measure of research output
over the career. Figure 3b shows the result. I find that the correlation between predicted publications
in academia and predicted earnings in industry is 0.19, confirming that research output offers limited

insight into industrial potential.

Looking at heterogeneity across observables, I find that the correlation between potential earnings
is lower for females than for males (0.15 vs 0.25) and lower for Americans than for internationals (0.30
vs 0.36). This correlation is also stronger in Social Sciences (0.51) and in Computer Sciences (0.34)
than in Life Sciences (0.18), Physical Sciences (0.13) and Engineering (0.11). This last result indicates
that academic productivity in Engineering offers little information about an individual’s potential in

industry.

Finally, I examine how the correlation between academic and industrial productivity has changed
over time. I calculate the correlation between residualized potential earnings separately for each PhD

cohort. Figure 4 shows the result. This correlation has decreased from 0.39 for cohorts before 1980

25Figure A.11 shows the histograms with potential earnings expressed in log.
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to 0.23 for cohort after 2010, representing a 40% decline. This implies that academic productivity has
become a less reliable predictor of industrial productivity. This pattern is consistent with broader shifts
in the relationship between academic science and industrial application, such as firms increasingly

disengaging from Science (Arora et al., 2018).

6.3 Misalignment Between Academic and Industrial Productivity: Implica-

tions for Firms’ Hiring

Building on the joint distribution between academic and industrial productivity, I now examine which
individuals join the private sector. While I have estimated individuals’ academic and industrial produc-
tivity independent of the sector they actually join, note that final sorting patterns reflect equilibrium
outcomes. In this section, I use these sorting outcomes to shed light on the challenges firms face
in evaluating scientists using academic productivity, and their consequences for firms’ ability hire

high-performing scientists.

6.3.1 Firms’ Hiring Outcomes

To implement this, I discretize residualized potential earnings in academia and industry into deciles
and construct a 10x10 matrix of potential earnings combinations. Figure 5 displays this matrix.2¢
Each cell represents a group of individuals who fall into a given decile of productivity in industry and
in academia. The color of each cell indicates the sector individuals join: yellow denotes a majority
entering industry, dark purple indicates a majority entering academia, and pink reflects a roughly even
split between the two sectors. Among individuals hired by firms, 79% have above-median industrial
productivity (35% °‘stars’ and 44% ‘industry-specialists’) while 21% have below-median industrial
productivity (3% ‘academia-specialists’ and 18% ‘modest achievers’). In contrast, the composition of
individuals hired by universities is more varied: 52% have above-median academic productivity (29%
‘stars’ and 23% ‘academia-specialists’) and 48% have below-median academic productivity (12%

‘industry-specialists’ and 36% ‘modest achievers’).

Figure 6 presents results by PhD field. In Computer Science, 80% of firms’ hires have above-median
industrial productivity, with a nearly even split between ‘stars’ and ‘industry-specialists’. In the Life
Sciences and Physical Sciences, about 60% of firms’ hires have above-median industrial productivity,
but these individuals are primarily concentrated in the pool of ‘industry-specialists’. In Engineering,
55% of firms’ hires have above-median productivity in industry (18% ‘stars’ and 37% of ‘industry-
specialists’). Figures A.15 and A.16 show that firms’ hiring composition is broadly similar across

gender and nationality: in each group, about 79% of hires have above-median productivity in industry.

26Figures A.13 and A.14 show the result in level.
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The previous result indicates that, among firms’ hires, 21% have below-median industrial produc-
tivity. To assess whether these individuals are more likely to represent hiring mismatches, I examine
whether these hires are more likely to be laid off. Each time an individual is surveyed, I observe
whether they are currently working or not, and if not, the reported reason for unemployment. I also
observe whether the individual remained with the same employer over the past two years and, if not, the
reported reason for the change. Based on this information, I define a layoff indicator at the person-year
level. It is equal to one if the individual either (i) reports currently not working due to a layoff, or
(1) reports having changed employer in the past two years due to a layoff. I then aggregate to the
individual level, assigning a value of one if the person was ever laid off across any of the survey waves
in which they appear. This variable aims to capture whether the individual ever experienced a layoft

during the observation window, serving as a proxy for poor matches from the firm’s perspective.

I then regress this outcome on a set of dummies for productivity group (‘star’, ‘industry-specialist’,
‘academia-specialist’, ‘modest achiever’). I include demographic controls and PhD major fixed-effects.
Since individuals who are surveyed more frequently have a mechanically higher chance of having been
laid-off, I also add PhD cohort fixed-effects and a set of fixed-effects for the number of survey waves
in which each individual is observed. To account for differences in layoff risk across career stage,
I additionally control for the experience level at which I first observe each individual. The results,
reported in Table B.3, show that individuals with below-median industrial productivity (‘academia-
specialists’ and ‘modest achievers’) are significantly more likely to be laid off than those with higher
predicted industrial productivity. This is consistent with the idea that lower-productivity hires are
more likely to reflect firm-side mismatches, i.e., cases where individuals did not meet productivity

expectations set at the time of hire.

6.3.2 Academic Productivity and Evaluation Challenges

To investigate whether hiring mismatches stem from evaluation challenges arising from the limited
ability of academic productivity to proxy for industrial potential, I exploit variation in the correlation
between academic and industrial productivity across PhD majors.?” For each major, I calculate the
share of firms’ hires who were ever laid off and regress this outcome on the major-level correlation. I
then repeat the analysis using an alternative measure of mismatch: the share of firms’ hires within each
major whose predicted industrial productivity falls below the median.?® Table 3 shows a negative and
statistically significant relationship in both cases: in majors with weaker alignment between academic

and industrial productivity, firms exhibit higher rates of both layoffs and below-median industrial

27This correlation varies between -0.10 and 0.55 with a mean of 0.18.

28The layoff-based measure reflects whether the match was ultimately dissolved by firms and thus provides a revealed-
performance outcome. However, layoffs are relatively rare, especially as I only observe individuals on average three
times during their career. The below-median productivity measure is available for all hires and provides a consistent
proxy for performance quality, but does not indicate whether the match ended. Taken together, the two measures offer
complementary insights into mismatch patterns.
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productivity hires. As expected, the estimate is attenuated in the layoff specification, consistent with

noise in the measurement of layoft status.

I also examine whether individuals identified as mismatches are more likely to display strong
academic indicators at graduation in majors where academic productivity is less predictive of industrial
productivity. The broader idea behind this test is to assess whether firms are acting on the observable
information they have at the time of hire, and whether reliance on academic attributes is more likely
to lead to suboptimal hiring outcomes when academic productivity is a noisy predictor of industrial
productivity. In other words, when academic and industrial productivity are weakly aligned, firms may
hire individuals who appear strong on paper but ultimately underperform in industry. I consider three
indicators of academic productivity at graduation: (i) publication count at graduation (ii) a binary
indicator for having at least one publication at graduation,?® and (iii) an indicator for having graduated
from a top-20 U.S. PhD.3°

I then estimate individual-level regressions among firms’ hires who are either laid-off or have
below-median industrial productivity, regressing indicators of academic productivity at graduation on
the correlation between academic and industrial productivity in their PhD major. All specifications
control for demographic characteristics and PhD cohort fixed-effects. Table 4 reports the results. In
fields where academic and industrial productivity are less aligned, mismatched hires are more likely to
display strong academic signals at graduation, such as publications or degrees from top institutions.3!
This suggests that in fields with weaker alignment, firms are more likely to hire underperformers

precisely because those individuals appear strong on academic metrics.

To examine whether the relationship between productivity alignment and layoffs varies across
organizational settings, I return to the field-level analysis. Specifically, I compute the share of
individuals laid off within each PhD major among those observed working in small firms, large firms,
R&D roles, and non-R&D roles, and regress each outcome on the field-level correlation.3? Results
are shown in Table 5. Compared to the sample mean, the regression coefficients in Columns (1)
and (2) imply that a 10 percentage point increase in the alignment between academic and industrial
productivity is associated with a 9% decrease in layoff rates among small firms’ hires, vs a 1% decrease

among large firms’ hires. This is consistent with the idea that small firms may have fewer resources

29Measures (i) and (ii) are standardized to account for major-level differences in publication rates. On average, students
have 2.2 publications at the time of graduation. 44% of students have no publication at the time of graduation.

3Ohttps://www.timeshighereducation.com/student/best-universities/best-universities-united-states
US Rank 2025.

31As a robustness check, I use predicted academic productivity (from the MTE model) as the outcome. Results are
similar, suggesting that the relationship holds when using a more comprehensive, model-based measure of academic
performance.

32 arge organizations are defined as organizations with more than 5,000 employees. R&D positions include basic or
applied research, development, equipment design, or computer programming. Non-R&D positions include management,
professional services, employee relations, and sales. Firm size and job role are based on the first employer and job activity
observed for each individual in the dataset.

22


https://www.timeshighereducation.com/student/best-universities/best-universities-united-states

or formalized processes to assess workers, making them more susceptible to hiring individuals whose
strengths do not translate into their work environment. When estimating separate regressions by role
type, Columns (3) and (4) show a negative and statistically significant relationship between productivity
alignment and layoff rates among R&D hires, but no significant relationship among non-R&D hires.
This result is consistent with the fact that academic productivity is less relevant to performance in
non-R&D positions and may not meaningfully influence hiring decisions. As a result, variation in
the alignment between academic and industrial productivity across fields has little bearing on layoff

outcomes in non-R&D contexts.

Taken together, this analysis sheds light on how measures of productivity developed in a differ-
ent institutional environment can create evaluation challenges for firms in identifying high-potential
individuals. When these measures are noisy predictor of industrial productivity, firms risk hiring in-
dividuals who underperform, incurring costly turnover, and missing out on better-aligned candidates.
These challenges seem particularly acute in small firms and in R&D-intensive roles. As a result, firms
operating in these environments face amplified risks when relying on academic indicators that do not

translate well to their own performance criteria.

6.4 Wage Premiums and Talent Attraction

Beyond evaluation, hiring also requires designing compensation packages that successfully attract
high-potential candidates—without overpaying for individuals whose strengths may not translate into
industrial performance. In this section, I estimate how much firms must offer to hire scientists, drawing

on observed sorting outcomes and predicted sectoral earnings to estimate compensating differentials.

I start by qualitatively examining the preferences of each pool of talent. I use questions asked to
individuals about several job attributes: (1) opportunities for advancement (2) benefits (3) intellectual
challenge (4) degree of independence (5) location (6) level of responsibility (7) security (8) salary
and (9) contribution to society. For each attribute, individuals are asked whether they consider it
as ‘very important’, ‘somewhat important’, ‘somewhat unimportant’ or ‘not important at all’.33 [
create an indicator variable equal to 1 if individuals declare this attribute as being very important
and O otherwise.** Figure A.18 shows the share of individuals who declare each attribute as ‘very
important’ as a function of the group they belong to. Each color represents a specific job attribute.
‘Industry-specialists’ care more about job’s opportunities for advancement, job’s responsibility and
job’s salary than other groups. ‘Stars’ and ‘academia-specialists’ share their particular care for job’s

intellectual challenge and job’s degree of independence compared to the other groups. However,

33This question is asked in each SDR edition, so that I have several observations per individual. Note that these variables
are imperfect proxy of preferences because these questions are asked to individuals during their career and so might have
been influenced by time spent working.

34Qverall, respectively 44%, 60%, 77%, 72%, 57%, 47%, 52%, 61% and 58% of individuals declare the attribute as being
‘very important’ (see Figure A.17).
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‘stars’ care significantly less than ‘academia-specialists’ about job’s security and job’s contribution to
society. Figure A.19 plots the same figure accounting for PhD major, gender, race and citizenship.

Results remain directionally similar.

I now estimate compensating differentials, i.e., the wage premium (or discount) required to make
individuals indifferent between industry and academia. I model the utility U, f of individual 7 in sector
j as:3s

Ul = BiIn(W/) + a;1{j = industry} 3)

where «; captures individual i’s preference for industry relative to academia and [; reflects the

sensitivity to earnings.3¢ Individual 7 chooses to work in industry (j = 1) iff:

i) =1 < U/ -U>0 < B (n(W/) —In(W/")) + a; >0 4)

Rearranging the expression to solve for the earnings premium that makes the individual indifferent

between industry and academia:

—Q; VVi] —
Ul —=U} =0 <= (W) —In(W;) = B A = ©

where —a; /3; represents the log earnings premium (or discount) required to compensate individual
for their preference for academia over industry. The corresponding earnings premium in dollars, P;,

is then:

In(

Wi+ P, —Q; Wi+ P, —Q; —Q;
— Y1) ©

A
)= ——— =exp( ) <= P, =W x (exp(

wi Bi wi Bi o B
This expression shows that the earnings premium required to attract a given individual into industry
depends on three factors: the strength of their non-pecuniary preferences («;), their sensitivity to
monetary compensation (/3;), and their potential earnings in academia (WW/*). The more negative «;

(i.e., the stronger the preference for academia), the higher the earnings premium required.

Empirically, I have estimated VVZ-j for each individual 7 and sector j. However, because each
individual makes only one sector choice, I cannot identify their personal preference parameter «;. |
start by assuming that preferences take the form o;1{j = industry} = « - 1{;j = industry} + 1/, where
« captures the average preference (or distaste) for industry relative to academia, and u{ are i.i.d Type
I Extreme Value distributed.

35This static model abstracts from explicit modeling of cross-sector career transitions. However, because predicted earnings
are estimated over the full observed career, they implicitly incorporate transitions between academia and industry. A
dynamic extension that models sectoral mobility more explicitly is presented in Appendix E.

36When «; > 0, the individual likes industry more than academia. When «; < 0, the individual prefers academia.
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This leads to a discrete choice logit model of the form:
Took) = vy + v In(W?) + 45 - 1{j = industry} + £’ 7

where Took’g equal 1 if individual i is observed in sector j, 1{j = industry} equals 1 if the choice
relates to industry and O if it relates to academia. —4,/4; is the empirical estimate of —«/5 and
represents the log earnings premium required to compensate individuals for the average preference
for academia over industry. To estimate this regression, I transform my dataset to have two rows
per individual, one for industry choice and one for academia choice. For each individual, I use their

(averaged) residualize potential earnings in each sector to proxy for W; .37

Table 6 shows the results. Column (1) reports the coefficients from the logit regression. Column
(2) reports the marginal effects. The estimated —7,/4; is 0.9. This implies that the average earnings
premium is P = 1.5 x W/, meaning that firms would need to pay on average 2.5 times the academic

wage to compensate individuals for academic preferences.

To bring further nuance into heterogeneity, I examine how the required earnings premium varies
continuously across the propensity score distribution, using a flexible, nonparametric specification
where I interact the main variables with deciles of the propensity score. Figure 7 reveals a steeply
decreasing premium curve: individuals with a propensity score below 0.1 (40% of the sample) require
an earnings premium of approximately 3.8 times the academic wage to be indifferent between sectors,
while those with a propensity score above 0.6 (7.6% of the sample) require no premium - and in some

cases, appear willing to accept lower earnings to work in industry.

I also examine how preferences vary as a function of individuals’ estimated earnings potential in
industry - which serves as my proxy for industrial productivity. This lens is particularly important for
firms, as it allows to understand what it would take to attract individuals who are most valuable in the
industrial setting. It is also helpful in understanding how correlated are preferences with industrial
productivity. Figure A.20 plots the estimated earnings premium needed to make individuals indifferent
between industry and academia against deciles of predicted industrial earnings. The required premium
is roughly constant at around 1.5 times the academic wage for individuals in the bottom four deciles of
industry earnings potential, but then declines linearly and reaches approximately 0.2 for those in the
top decile.3® This result suggests that preferences are not orthogonal to skills: individuals with high

industrial potential also tend to have stronger preferences for industry. As a consequence, attracting

37For this regression, I use all individuals’ earnings, including earnings observations associated with a different sector from
the one they initially joined. This approach reflects that I am not solely estimating productivity in each sector separately,
but rather examining individuals’ career choices, which also accounts for the probability of switching sectors during the
career.

38] also calculate the earnings premium by group: Stars have an earnings multiplier of 0.9, industry-specialists of 0.4,
modest achievers of 1.8 and academia-specialist of 3.7.
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high-productivity scientists is less costly than average estimates of the academic premium would
suggest: individuals with above-median industrial productivity require an earnings premium between

0.2 and 1.1 times the academic wage.

7 Robustness

Other measures of productivity - As a check on the main results, I repeat the analysis using alternative
proxies. Using sector-specific, citations-weighted publication output as a proxy for productivity in
each sector yields a correlation of 0.24 (see Figure [awaiting export approval]). In the subsample of
3,599 individuals observed in patent waves, using predicted patent output as the industry-side proxy
and predicted publication output as the academia-side proxy yields a correlation of 0.13 (see Figure
[awaiting export approval]).?® These patterns are directionally consistent with the earnings-based
findings. The smaller magnitude in the patent subsample may reflect field composition: Physical
Sciences are over-represented and Life Sciences under-represented, and the within-field correlation is

lower in Physical Sciences in my data.

Postdocs - In my analysis, I associate individuals who start a postdoc after PhD graduation as joining
academia. I also reiterate my analysis by associating each individual with a postdoc with the first sector
I observe them working in 10 years or more after PhD graduation.#® The F-statistic for the first-stage
equals 25. Using this sector assignment, 71% of postdocs are still observed in academia and 29% are
in industry. I find a correlation of 0.35 between academic and industrial productivity using predicted
earnings and a correlation of 0.17 using predicted earnings in industry and and predicted publications
in academia, similar to the baseline results. 80% of firms’ hires have above-median productivity in
industry, similar to the 79% of the baseline results. Universities’ hires are similar to the baseline

results (see Figure A.21).

Government sector - In my main specification, I bundle individuals who join academia and the
government sector together. I also check that my results are robust to excluding individuals who join
the government sector (2,930 individuals). The F-statistic for the first-stage remains similar (value of
38). I find a similar correlation of 0.33. Figure A.22 shows firms’ and universities’ hiring composition.
69% of firms’ hires have above-median productivity in industry. Universities’ hiring composition is
almost unchanged, with 30% of ‘stars’, 13% of ‘industry-specialists’, 23% of ‘academia-specialists’

and 34% of ‘modest achievers’.

Functional form assumptions - My baseline Marginal Treatment Effects results use the separate method
with a polynomial of degree 1 and a probit for the first-stage equation. Figure A.23 shows that the MTE

curves are robust to using a polynomial of degree 2 or a semi-parametric approach, which imposes

39The F-statistic on this sample equals 20.
404,357 postdocs (31%) are not observed after 10 years of experience and are therefore dropped from the estimation.
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less functional form assumptions. I also check in Figure A.24 that the curves are robust to using a

logit or a linear probability model when estimating the first-stage equation.

Empirical strategy - My instrument leverages variation in individuals’ graduation year within a field of
study. One concern could be changes in skills over time that would correlate with the instrument, e.g.
if an increase in firms’ demand in Computer Science over time correlates with more industry-skilled
students sorting into that field of study. To test the robustness of my results, I create indicators for
each window of 5 years tied to year of graduation (e.g., one indicator for graduation years 1970 to
1974, one indicator for graduation years 1975 to 1979 etc.). I then interact these windows with PhD
field fixed-effects and add them into my regressions. This allows me to compare individuals in the
same field who graduated around the same time (e.g., Computer Science students between 2000 and
2004) and effectively control for structural major-related shifts in skills composition. The F-statistic
decreases to 14 but remains strong. I find a similar correlation of 0.33 between potential earnings
in industry and potential earnings in academia. Compared to the baseline results, I find that firms
only hire 53% of individuals with above-median productivity in industry (vs 79% in the main results),

distributed equally between ‘stars’ and ‘industry-specialists’.

8 Conclusion

Knowledge workers play an increasingly central role in firm innovation. Yet, firms face substantial
uncertainty about individuals’ potential in an industrial setting and, in many cases, must rely on
measures of academic productivity to make hiring decisions. However, it is unclear whether the
most academically productive individuals would also be the most productive in industry. This paper
investigates how academic and industrial productivity align and what consequences this alignment
- or lack thereof - has for firms’ evaluation and compensation of scientific talent. To do so, I use
confidential administrative data on PhD graduates and estimate individuals’ expected productivity
in both academia and industry using Marginal Treatment Effects, leveraging exogenous variation in

private-sector demand over time.

Three key findings emerge. First, academic and industrial productivity are only moderately aligned,
with a correlation between 0.19 and 0.28 depending on the productivity measures used. This correlation
has decreased over time, implying that academic productivity has become less informative about
industrial productivity. Second, 21% of firms’ hires have below-median industrial productivity and
these individuals are significantly more likely to be laid off. To examine whether such hires stem
from the limited alignment between academic and industrial productivity, I exploit variation in this
alignment across majors. I find that low-productivity hires and layoffs are both more common, and
more likely to exhibit strong academic productivity at graduation, in majors where academic and

industrial productivity are less aligned. This suggests that weak alignment between academic and

27



industrial productivity creates evaluation challenges, resulting in hires that carry a higher risk of
underperformance and layoff. Third, hiring scientists requires substantial variation in compensation:
40% of individuals would require an earnings premium equivalent to 3.8 times the academic wage,
while 8% require no premium. Individuals with low industrial potential also tend to have higher
preferences for academia. As a result, weak alignment between academic and industrial productivity

not only increases the likelihood of hiring underperformers, but also increases hiring costs.

My results underscore the challenges firms face when hiring workers from a different institutional
context. I show that when available measures of productivity reflect a different set of norms and incen-
tives, they can lead to both hiring mismatches and increased hiring costs. Importantly, this challenge
is not about noisy observable metrics, but reflects a deeper tension in using information generated
under one institutional logic to predict performance in another. This tension arises broadly in settings
where organizations must assess individuals or ideas across institutional boundaries (Bikard, 2018;
Bikard and Marx, 2020; Boudou and Roche, 2023; Cooper et al., 1994; Gittelman and Kogut, 2003).
Methodologically, I apply Marginal Treatment Effects to estimate each individual’s productivity in
both academia and industry, decoupled from observed outcomes. I also extend prior work on scientists’
compensating differentials by providing a more comprehensive and managerially relevant estimate of
the earnings premium required to hire scientists. While prior work has found that individuals accept on
average a 20-25% salary discount to be able to publish (Roach and Sauermann, 2010; Stern, 2004), my
approach captures the full bundle of job attributes and accounts for heterogeneity across individuals.
More broadly, this paper highlights that leveraging scientific talent is not simply about acquiring PhDs
or absorbing external knowledge. Rather, it depends critically on selecting and attracting the right
scientists - those whose skills align with the firm’s needs (Arora and Gambardella, 1994). As such,

these findings point to evaluation itself as a core strategic capability in innovation-driven organizations.

These findings also have significant implications for firms’ hiring strategies, especially as organiza-
tions increasingly rely on knowledge and innovation to drive growth and performance (Gambardella,
1992). When measures of performance originate from a different institutional context, even highly
structured and rational hiring processes can lead to suboptimal outcomes - including costly layoffs
and missed opportunities to recruit high-potential talent. These challenges are further amplified in the
current hiring environment, where the growing use of generative Al has made traditional evaluation
tools (e.g., take-home coding tests or written assessments) less reliable for identifying high-potential
candidates. As a result, firms may default to readily observable academic credentials (Piezunka and
Dahlander, 2015), such as publication records or university prestige, that may not translate into in-
dustrial performance. My findings underscore the risks of this approach and highlight the importance
of more tailored evaluation practices. The observed variation in alignment between academic and
industrial productivity across fields suggests that firms may benefit from field-specific hiring strategies

to assess candidates’ potential. These may include structured interviews that simulate real work con-

28



straints, internships, or collaborative research projects that allow firms to directly observe candidates’

performance in relevant contexts (Baruffaldi and Poege, 2025; Honoré and Ganco, 2023).

Understanding the alignment between academic and industrial productivity is critical not just for
evaluating candidates, but also for designing effective offers. When firms rely on academic credentials
without recognizing how they map onto industrial productivity, they risk overpaying for individuals
whose academic strengths do not translate into high productivity in their setting. My results show
that hiring high-potential candidates is not necessarily an easy task, as scientists with high industrial
potential vary widely in their preferences and in the compensating differentials they require to enter
industry (Roach and Sauermann, 2010; Stern, 2004). Some may prioritize autonomy or intellectual
challenge over salary, while others are more responsive to opportunities for advancement and impact.
Firms aiming to attract top scientific talent might therefore benefit from crafting roles and environments
that appeal to the specific preferences of their target candidates (Sauermann and Roach, 2014). More
broadly, these results suggest that firms cannot rely on one-size-fits-all approaches to hiring scientific
talent. Recognizing this complexity and tailoring hiring practices accordingly is likely to be critical

for building and sustaining a competitive edge in science-driven industries.

A few limitations of this study provide fertile ground for future work. First, given constraints on
the data used, I do not have information about organization-level outcomes, which limits the ability
to concretely link scientists’ sorting to firm performance. In particular, the study does not address
whether the current allocation of talent across sectors is optimal, either from the perspective of firms
or from that of social planners. Moreover, I lack information about the characteristics of individuals’
publication output, such as journals, references, and abstracts. This limitation restricts my ability to
discuss the direction of the innovation that individuals would produce within each sector. Assessing
these directional aspects of innovation and how they relate to the types of talent they recruit might be
crucial for organizations, especially in firms where scientists have autonomy over the direction of their

research. These gaps highlight promising avenues for future research.
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Figures

Figure 1: Stylized relationship between academic and industrial productivity
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(c) Null correlation
Notes: Each dot represents an individual. Each panel illustrates a stylized joint distribution between academic and
industrial productivity. (a) Negative correlation: individuals tend to be productive in one sector but not the other. (b)

Positive correlation: individuals productive in one sector are also productive in the other. (c) Zero correlation: no
systematic relationship between productivity across sectors.
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Figure 2: Sector joined, by PhD cohort and field

Share of individuals going to Industry
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Notes: This figure shows the share of individuals entering industry by PhD graduation cohort and PhD field. Dots are
omitted for early cohorts in certain fields due to confidentiality restrictions.

Figure 3: Relationship between individuals’ industrial and academic productivity
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Notes: This figure shows a scatter plot of individuals® estimated productivity in academia (x-axis) and industry (y-axis),
based on Marginal Treatment Effect estimates. Panel (a): Productivity in each sector is proxied by predicted earnings in that
sector, residualized by experience and its square, and averaged at the individual level. Panel (b): Industrial productivity (y-
axis) is proxied by predicted earnings in industry, residualized by experience and its square, and averaged at the individual
level. Academic productivity (x-axis) is proxied by predicted publication output in academia from graduation to 2017,
weighted by citation counts received within five years and residualized by experience, its square, and PhD major.
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Figure 4: Correlation between academic and industrial productivity, by PhD cohort

Correlation between potential earnings
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Notes: This figure shows the correlation between individuals’ academic and industrial productivity, as a function of PhD
cohort of graduation. Individuals’ productivity in academia and industry is proxied by their predicted earnings in each
sector.
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Figure 5: Sector joined, by academic and industrial productivity
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Notes: Each cell in the grid represents a group of individuals based on their decile of academic productivity (x-axis) and
industrial productivity (y-axis). Productivity in each sector is proxied using predicted earnings in that sector, residualized
by experience and its square, and averaged at the individual level. The size of each square is proportional to the number
of individuals in that cell. The color intensity indicates the share of individuals in that group who are observed to join
industry (lighter = more industry, darker = more academia).
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Figure 6: Sector joined, by academic and industrial productivity - Heterogeneity by PhD field
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Notes: Within each panel, each cell in the grid represents a group of individuals based on their decile of academic
productivity (x-axis) and industrial productivity (y-axis). Productivity in each sector is measured using predicted earnings
in that sector, residualized by experience and its square and averaged at the individual level. The size of each square is
proportional to the number of individuals in that cell. The color intensity indicates the share of individuals in that group
who are observed to join industry (lighter = more industry, darker = more academia).
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Figure 7: Estimated compensating differential, by predicted probability of choosing industry
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Notes: This figure shows the estimated earnings premium required to make individuals indifferent between industry and
academia, by decile of their predicted probability of entering industry based on observables and the instrument. The x-axis
divides this probability into ten bins (0-0.1, 0.1-0.2, ..., 0.9—1). For each bin, the line shows the estimated compensating
differential relative to academic earnings, calculated as exp(=5%) — 1 where oy, captures average preferences for industry
in bin k£ and S reflects sensitivity to earnings. The shaded area indicates 95% confidence intervals, based on bootstrapped
standard errors clustered at the individual level. Bar heights represent the share of individuals in each bin.
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Tables

Table 1: Summary statistics

(D (2) (1D)-(2)
Academia Industry Difference

mean sd mean sd diff in means  t-stat
Earnings (th., 2015 USD) 99.9 582 1674 102.6 -67.48 -43.4%
Publications (cum.) 20.8 304 5.3 11.2 15.50 49 3%
PhD Graduation Year 2000.4 10.5 2000.6 9.9 -0.11 -0.7
White 0.7 0.5 0.6 0.5 0.11 13.3%**
Female 04 0.5 0.3 0.4 0.18 23.6%**
Mother has PhD 0.1 0.2 0.1 0.2 0.01 2.8%*
Father has PhD 0.2 0.4 0.2 04 0.03 5.0
American 0.8 04 0.6 0.5 0.13 16.4%**
Observations 17,895 4,714 22,609

Notes: *** **% denote significance at 10%, 5% and 1% level respectively.

attainment is a PhD. American: 0/1=1 if the individual is a U.S. citizen.
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This table lists summary statistics for the
sample of 22,609 individuals, separately for individuals who join academia and individuals who join industry. Column
‘diff in means’ reports the difference between the mean in academia and the mean in industry. Column ‘t-stat’ reports
the t-statistic of a test of equality of means. Earnings: Average annual earnings in thousands of USD 2015, computed
across all survey waves in which the individual is observed. Publications: aggregate number of publications between PhD
graduation and 2017. PhD graduation year: Fiscal year of doctorate. White: 0/1=1 if the individual’s race/ethnicity is
reported as white. Female: 0/1=1 if the individual reports being a female. Mother has PhD: 0/1=1 if the individual’s
mother highest educational attainment is a PhD. Father has PhD: 0/1=1 if the individual’s father highest educational



Table 2: Tests of validity of the instrument

Test of: Strategic Graduation Strategic Entry
PhD Duration < Average > Average Z; Industry
(1 (2) 3) “) ®)
Z; -0.186 -0.030 0.047
(0.258) (0.085) (0.084)
Z; (entry) -0.030 0.003
(0.022) (0.043)
Demographics Yes Yes Yes Yes Yes
Experience Yes Yes Yes Yes Yes
PhD major FE Yes Yes Yes Yes Yes
Doct. inst. FE Yes Yes Yes Yes Yes
Macro cond. Yes Yes Yes Yes Yes
Observations 16,733 16,720 16,720 14,279 14,279
R-sq 0.14 0.18 0.18 0.84 0.25

Notes: *** *** denote significance at 10%, 5% and 1% level respectively. The outcome in Column (1) is calculated as the
difference between PhD graduation year and PhD entry year. The outcome in Column (2) is an indicator equal to 1 if PhD
duration is strictly below the average PhD duration of other individuals in the same cohort and PhD major. The outcome
in Column (3) is an indicator equal to 1 if PhD duration is strictly above the average PhD duration of other individuals in
the same cohort and PhD major. The outcome in Column (4) is the instrument, calculated as in Equation 1. The outcome
in Column (5) is an indicator equal to 1 if the individual joins industry. Z; (entry) is the instrument calculated for the
year before PhD entry. Demographics includes an indicator equal to 1 if the individual is female, an indicator equal to
1 if the individual is white, an indicator equal to 1 if at least one of the individual’s parents has a doctoral degree, an
indicator for being an American citizen and birth place fixed-effects. Experience includes a linear and quadratic terms for
experience, calculated as the difference between survey year and PhD graduation year. Macro cond. includes controls for
the unemployment rate and field-specific federal funding at the time of graduation. Standard errors are clustered at the
PhD majorxPhD cohort level.
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Table 3: In majors with weaker alignment between academic and industrial productivity, firms hire
individuals who are more likely to be laid off and to have low industrial productivity

% layoff % below-median P/

(1 2)
Acad.-Ind. alignment -0.026*** -0.294***
(0.003) (0.005)
Observations 56 56
Mean of dep. var. 0.10 0.15

Notes: *** *%% denote significance at 10%, 5% and 1% level respectively. The level of analysis is a PhD major. For
each PhD major, the outcome in Column (1) is the share of individuals who joined industry and were ever laid off. For
each PhD major, the outcome in Column (2) is the share of individuals who joined industry whose predicted industrial
productivity falls below the median. The independent variable in both specifications is the correlation between academic
and industrial productivity within each PhD major. Lower correlation reflects weaker alignment between the two sectors.
All regressions are weighted by the number of individuals in each major. Robust standard errors.

Table 4: In majors with weaker alignment between academic and industrial productivity, laid off and
low-performing hires are more likely to exhibit indicators of academic productivity at graduation

z-publication (#) z-publication (0/1) Top PhD Institution
(1) (2) (3) “4) %) (6)

Acad.-Ind. alignment -1.164"** -0.778* -0.765* -1.050"** -0.084 -0.457***
(0.411)  (0.324) (0.444) (0.337) (0.183) (0.093)

Demographics FE Yes Yes Yes Yes Yes Yes
Experience Yes Yes Yes Yes Yes Yes
Observations 496 712 496 712 714 1,114
Mean of dep. var. -0.11 -0.11 -0.03 0.007 0.25 0.10

Notes: *** *%* denote significance at 10%, 5% and 1% level respectively. In Columns (1), (3), (5), the sample is restricted
to individuals who joined industry and were ever laid off. In Columns (2), (4), (6), the sample is restricted to individuals
who joined industry whose predicted industrial productivity falls below the median. In Columns (1) and (2), the outcome
is an indicator for having at least one publication at graduation. This measure is standardized by PhD major. In Columns
(3) and (4), the outcome is publication count at graduation. This measure is standardized by PhD major. In Columns
(5) and (6), the outcome is an indicator for graduating from a top-20 U.S. PhD program. The independent variable is
the correlation between academic and industrial productivity within each PhD major. Lower correlation reflects weaker
alignment between the two sectors. All regressions control for demographic characteristics and PhD cohort fixed-effects.
Standard errors are clustered at the PhD major x PhD cohort level.
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Table 5: Layoff rates and productivity alignment: Heterogeneity across firm types and roles

%o layoft
Small firm Large firm Non-R&D role Ré&D role
() (2) 3) 4)
Acad.-Ind. alignment -0.079***  -0.012*** 0.007 -0.014***
(0.005) (0.004) (0.007) (0.006)
Observations 55 52 52 54
Mean of dep. var. 0.14 0.10 0.11 0.13

Notes: *** **% denote significance at 10%, 5% and 1% level respectively. The level of analysis is a PhD major. The
outcome in Column (1) is the share of individuals who joined a firm with less than 5,000 employees and were ever laid
off. The outcome in Column (2) is the share of individuals who joined a firm with more than 5,000 employees and were
ever laid off. The outcome in Column (3) is the share of individuals who joined industry under a non-R&D position and
were ever laid off. The outcome in Column (4) is the share of individuals who joined industry under an R&D position and
were ever laid off. R&D positions include basic or applied research, development, design, or programming. Non-R&D
positions include management, sales, consulting, or professional services. The independent variable in all specifications
is the correlation between academic and industrial productivity within each PhD major. Lower correlation reflects weaker
alignment between the two sectors. All regressions are weighted by the number of individuals in each major. Robust
standard errors.

Table 6: Estimation of average compensating differentials between academia and industry

Choose Sector=1

Logit  Marginal Effect

(1) (2)

Log(Earnings) 3.386™* 0.505**

(0.053) (0.008)
Sector (Industry=1) -3.093*** -0.461***

(0.036) (0.001)
Constant 1.438***

(0.018)
Observations 43,632 43,632

Notes: *** *** denote significance at 10%, 5% and 1% level respectively. The unit of observation is the individual-
sector pair. Each individual appears twice: once for industry and once for academia. The dependent variable equals 1
if the individual chose the sector represented by that row. Log(Earnings) refers to the log of predicted earnings in the
corresponding sector. Sector (industry=1) is a dummy equal to 1 if the row corresponds to industry. Column (2) reports
marginal effects. Robust standard errors are clustered at the individual level.
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Appendix

Appendix A Figures

Figure A.1: PhD fields and majors

Field | | | Computer Sciences/Mathematics Physical Sciences Social Sciences
Computer/Information Sciences Astronomy/Astrophysics Agricultural economics
Major | | [Applied Mathematics Physics Economics
Operations Research Other physical sciences Public Policy
Statistics Chemistry Political Sciences
Other Mathematics Atmospheric Sciences Educational Psychology
Geology Clinical Psychology
Life Sciences Geological Sciences Counseling psychology
Biochemistry and Biophysics Experimental psychology
Biology Engineering Industrial/Organizational psychology
Botany Aerospace Engineering Social psychology
Cell and Molecular Biology Chemical Engineering Other psychology
Ecology Civil Engineering Anthropology/Archaeology
Genetics Computer Engineering Criminology
Microbiological Sciences Electrical Engineering Sociology
Animal Sciences Industrial Engineering Area and Ethnic Studies
Food Sciences Mechanical Engineering Geography
Plant Sciences Bioengineering and biomedical Engineering Other social sciences
Other Agricultural Sciences Engineering Sciences
Pharmacology Environmental Engineering
Zoology Materials Engineering
Other biological Sciences Other Engineering
Physiology and Pathology
Environmental Sciences
Forestry Sciences

Notes: This figure shows the PhD fields and majors present in my sample. For confidentiality reasons, I am not allowed to
export the number of students per PhD major, but Figure A.3 shows the number of individuals by PhD cohort of graduation
and main PhD field of study.



Figure A.2: Earnings curve by status after PhD graduation
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Notes: This figure shows the earnings profile of individuals as a function of their employment status upon PhD graduation.
The blue curve represents individuals who start a postdoc after PhD graduation. The red curve represents individuals who
join academia after PhD graduation but not under a postdoc position. The green curve represents individuals who join the
private sector. Earnings are expressed in 2015 USD, winsorized below the 1°¢ and above the 99*" percentiles and logged.

Figure A.3: Number of individuals, by PhD cohort and field
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Notes: This figure shows the number of individuals by PhD cohort of graduation and main PhD field of study. The values
for years 1980 and 1981 for the field of Engineering are combined into a single dot corresponding to the year 1981 for
confidentiality reasons.



Figure A.4: Sector joined, by PhD cohort

1600 L5
1400 z
]
L4 3
» 1200 E
El 2
2 1000 L3 2
5 S
= 800 o
[} ©
5 2 3
S 6004 22
E 5
> £
Z 400 b
__1 9
200 2
[%)]

0- )

T T T T T T T T
1980 1985 1990 1995 2000 2005 2010 2015

PhD cohort
[ Academia [ __! Industry

Notes: This figure shows the number of individuals entering academia (blue bars) and industry (yellow bars) by PhD
graduation cohort. The black line shows the share of individuals entering industry.

Figure A.5: Earnings as a function of experience and sector joined at graduation
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Notes: This figure shows average earnings in thousands of USD 2015 as a function of the sector where
individuals started their career.



Figure A.6: Citation-weighted publications (stock) as a function of experience and sector joined at
graduation
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Notes: This figure shows the average cumulative number of publications published by individuals as a function
of experience, separately for those who join the academic sector and those who join the private sector. The
number of publications is weighted by the number of citations received up to 5 years after publication.



Figure A.7: Instrumental variable, assumptions
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Notes: The utility function of individual ¢ in sector j is Uij = B,»Wij + a;1{j = industry}, where «; captures
individual ¢’s preference for industry relative to academia and (; reflects sensitivity to earnings. Wf can be
decomposed into VVf =Wi+ 577 where W captures the part of earnings explained by observables and 5]
captures the part of earnings related to unobservable components. Similarly, the productivity of individual ¢ in
sector j can be written as P/ = PJ 4 v?. Individual i joins industry iff 8;(WT —WA) + ; (6 — )+ > 0.

Section F shows that 6/ — d/ is correlated with 6! and/or 6;*, which creates endogeneity issues when

productivity is proxied by earnings, i.e., Pj = WZJ . As a consequence, the exogeneity assumption requires
that individuals who select into industry (higher 6/ — §') do not systematically graduate in years where

industry demand is high.



Figure A.8: Distribution of the instrumental variable Z;
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Notes: This figure shows an histogram of the instrumental variable Z; as defined in Equation 1 for the 22,609 unique
individuals in the sample. Bars with less than 5 observations are excluded for confidentiality reasons.

Figure A.9: Distribution of estimated propensity to join industry, by sector joined
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Notes: This figure displays the distribution of the estimated propensity score - the predicted probability that an individual
enters industry at graduation - based on observables (X;) and the instrument (Z;). The distribution is plotted separately
for individuals who join academia (blue bars with solid lines) and those who join industry (yellow bars with dashed lines).

For confidentiality reasons, only bins with at least 10 observations are displayed.



Figure A.10: Distribution of estimated earnings in academia and industry, in level
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Notes: This figure shows the distribution of individuals’ expected earnings in academia, transformed in 2015 USD
thousands (blue bars, solid line) and expected earnings in industry, transformed in 2015 USD thousands (yellow bar,
dashed line).

Figure A.11: Distribution of estimated earnings (log) in academia and industry
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Notes: This figure shows the distribution of expected earnings in academia, in log (blue bars, solid line) and expected
earnings in industry, in log (yellow bar, dashed line).



Figure A.12: Relationship between industrial and academic productivity (non-residualized)
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Notes: This figure shows a scatter plot of estimated productivity in academia (x-axis) and estimated productivity in
industry (y-axis), based on Marginal Treatment Effect (MTE) estimates. Panel (a): Individuals’ productivity in academia
and industry is proxied by their predicted earnings in each sector (in thousands of 2015 USD). All earnings observations
(non-residualized by experience) are kept. Panel (b): Individuals’ industrial productivity is proxied by their predicted
earnings in industry (in thousands of 2015 USD), and individuals’ academic productivity is proxied by their predicted
publication output in academia, weighted by citations received in the first five years.

Figure A.13: Sector joined by academic and industrial productivity, non-residualized
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Notes: This figure shows a scatter plot of estimated earnings in academia (x-axis) and estimated earnings in industry
(y-axis). The x-axis and y-axis are in thousands of 2015 USD. The color of the dots is proportional to the share of
individuals who join the private sector (lighter=more industry, darker=more academia).



Figure A.14: Sector joined by academic and industrial productivity, (residualized)
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Notes: This figure shows a scatter plot of estimated earnings in industry (y-axis) as a function of estimated earnings in
academia (x-axis), residualized as in Figure 3a. The color of the dots is proportional to the share of individuals who join
the private sector (lighter=more industry, darker=more academia).

Figure A.15: Sector joined by academic and industrial productivity, by gender
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Notes: This figure shows the distribution of potential earnings and sorting outcome for females (left figure) and males
(right figure). To calculate the x and y values, I first divide the sample between males and females. Within each group,
I residualize potential earnings in each sector by experience and experience squared and average values at the individual
level to keep one observation per individual. I then create 10 quantiles of (residualized) potential earnings in academia
(x-axis) and 10 quantiles of (residualized) potential earnings in industry (y-axis). The size of the square is proportional to
the number of individuals with the corresponding combination of x and y values. The color of the squares is proportional
to the share of individuals who join the private sector.



Figure A.16: Sector joined by academic and industrial productivity, by nationality
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Notes: This figure shows the distribution of potential earnings and sorting outcome for Americans (left figure) and
Internationals (right figure). To calculate the x and y values, I first divide the sample between Americans and Internationals.
Within each group, I residualize potential earnings in each sector by experience and experience squared and average values
at the individual level to keep one observation per individual. I then create 10 quantiles of (residualized) potential earnings
in academia (x-axis) and 10 quantiles of (residualized) potential earnings in industry (y-axis). The size of the square is
proportional to the number of individuals with the corresponding combination of x and y values. The color of the squares
is proportional to the share of individuals who join the private sector.

Figure A.17: Preferences over job attributes

74

6 = _

5 ]
e )

3

2+

A+

0- L

Advancement Benefits Challenge [ Independence Location

[ Responsibility [T Salary I security I society

Notes: This figure shows the share of individuals who report the job attribute as ‘very important’. Possible answers are
‘very important’, ‘somewhat important’, ‘somewhat unimportant’ or ‘not important at all’.
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Figure A.18: Preferences over job attributes, by profile
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Notes: Each color represents a job attribute - from left to right: (1) job’s opportunities for advancement (2) job’s benefits
(3) job’s intellectual challenge (4) job’s degree of independence (5) job’s location (6) job’s level of responsibility (7) job’s
security (8) job’s salary and (9) job’s contribution to society. For each attribute, the four bars represent successively:
the share of ‘stars’ who report the job attribute as ‘very important’, the share of ‘industry-specialists’ who report the job
attribute as ‘very important’, the share of ‘academia-specialists’ who report the job attribute as ‘very important’ and the
share of ‘modest achievers’ who report the job attribute as ‘very important’.

Figure A.19: Preferences over job attributes controlling for major and demographics, by profile
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Notes: This figure shows the share of individuals who report the job attribute as ‘very important’, by individuals’ profile,
after accounting for PhD major and demographics.
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Figure A.20: Estimated compensating differential, by decile of estimated industrial productivity
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Notes: 1 create 10 deciles of estimated earnings in industry - which proxy for industrial productivity. For each decile, the
line shows the estimated earnings premium relative to W7, i.e., exp( _g’“ ) — 1 where ay, represents the average preference
for industry relative to academia for individuals in decile k£ and [ reflects the sensitivity to earnings. The shaded area
indicates 95% confidence intervals, based on bootstrapped standard errors clustered at the individual level. The bars
represent the share of individuals in each decile.
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Figure A.21: Sector joined by academic and industrial productivity, robustness for postdocs
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Notes: To construct this figure, I estimate MTE of sector joined on earnings using as sector of employment for postdocs
the first sector in which I observe them working 10 years post-PhD graduation. Non-postdoc are still assigned to the sector
in which I observe them upon PhD graduation. The x-axis shows the 10 quantiles of predicted earnings in academia and
the y-axis shows the 10 quantiles of predicted earnings in industry. Predicted earnings in each sector are residualized by
experience and experience squared and averaged at the individual level to keep on observation per individual. The size of
the square is proportional to the number of individuals with the corresponding combination of x and y values. The color
of the squares is proportional to the share of individuals who join the private sector.
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Figure A.22: Sector joined by academic and industrial productivity - excl.
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Notes: This figure excludes individuals who start in government. This figure shows the 10 quantiles of predicted earnings
in academia on the x-axis and the 10 quantiles of predicted earnings in industry on the y-axis. Predicted earnings in each
sector are residualized by experience and experience squared and averaged at the individual level to keep on observation
per individual. The size of the square is proportional to the number of individuals with the corresponding combination of
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x and y values. The color of the squares is proportional to the share of individuals who join the private sector.

Figure A.23: Marginal Treatment Effects curve using different functional forms
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Notes: This figure shows the MTE curve using a polynomial of degree 1 (solid line), a polynomial of degree 2 (dashed
line) and a semiparametric approach (dotted line).
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Figure A.24: Marginal Treatment Effects curve using different first-stage specifications
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Notes: This figure shows the MTE curve using a probit function (solid line), a logit function (dashed line) and a linear
probability model (dotted line) for the specification of the first-stage.

Figure A.25: MTE Curves
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Notes: These figures show the Marginal Treatment Effects curves for the (log) publications and (log) earnings
outcomes, estimated with the separate approach and a polynomial of degree 1. Standard errors are bootstrapped
at the PhD cohort x PhD major level. The dotted lines represent the 90% confidence interval.
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Appendix B Tables

Table B.1: OLS regression of Log(Earnings) on sector joined

Log(Earnings)
ey 2) 3) “4) &)
Industry 0.486™* 0.488* 0.413** 0.412*** 0.397**
(0.010) (0.010) (0.013) (0.012) (0.012)
Experience Yes Yes Yes Yes
PhD major FE Yes Yes Yes
Doct. inst. FE Yes Yes
Demographics Yes
Observations 69,917 69917 69917 69917 69,917
R-sq 0.09 0.18 0.22 0.24 0.26

Notes: *** **% denote significance at 10%, 5% and 1% level respectively. The outcome is Log(Earnings). Industry is
an indicator equal to 1 if the individual joins industry and O otherwise. Experience includes a linear and quadratic terms
for experience, calculated as the difference between survey year and PhD graduation year. Demographics includes an
indicator equal to 1 if the individual is female, an indicator equal to 1 if the individual is white, an indicator equal to 1 if
at least one of the individual’s parents has a doctoral degree, an indicator for being an American citizen and birth place
fixed-effects. Standard errors are clustered at the doctoral institution level.

Table B.2: First-stage

Industry
Z; 0.268**

(0.043)
Demographics Yes
Experience Yes
PhD major FE Yes
Doct. Inst. FE Yes
Macro cond. Yes
F-stat (Kleibergen-Paap) 39
F-stat (Cragg-Donald Wald) 298
Observations 69,917
R-sq 0.27

Notes: *****% denote significance at 10%, 5% and 1% level respectively. The outcome is an indicator equal to 1 if
individuals join industry and O otherwise. Demographics includes an indicator equal to 1 if the individual is female,
an indicator equal to 1 if the individual is white, an indicator equal to 1 if at least one of the individual’s parents has a
doctoral degree, an indicator for being an American citizen and birth place fixed-effects. Experience includes a linear and
quadratic terms for experience, calculated as the difference between survey year and PhD graduation year. Macro cond.
includes controls for the unemployment rate and field-specific federal funding at the time of graduation. Standard errors
are clustered at the PhD major x PhD cohort level.
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Table B.3: Layoff rate, by individual’s profile

Industry Specialist

Academia Specialist

Modest Achiever

Low industrial productivity=1

PhD major FE

PhD cohort FE
Demographics

Number of survey waves FE
Observations

Mean of dep. var.

1{Layoff=1}
(D (2)
0.027
(0.017)
0.085**
(0.035)
0.043**
(0.022)
0.032**
(0.016)
Yes Yes
Yes Yes
Yes Yes
Yes Yes
4,686 4,686
0.14 0.14

Notes: *****%* denote significance at 10%, 5% and 1% level respectively. The outcome is an indicator equal to 1
if the individual was ever laid off across any of the survey waves in which they appear. In column (1), the excluded
category is ‘star’. In column (2), ‘low industrial productivity’ equals 1 if the individual has below-median industrial
productivity (‘modest achiever’ or ‘academia-specialist’). Demographics include controls for gender, race, nationality and
the experience level at which I first observe each individual. Standard errors are clustered at the PhD major x PhD cohort

level.

17



Appendix C Modeling the Correlation between Academic and
Industrial Productivity

Let each individual ¢ have three skills: k:ZG is a general skill valued by both industry and academia, k:lA is a skill
specific to academia and k{ is a skill specific to industry. Assume productivity is linear in skills so that:

A — 9@/{}? + HAkZA
B — 0qkS + 0pk?

where 0 denotes the return to general skills, 64 the return to academia-specific skills and 6p the returns to
industry-specific skills. The correlation between sector-specific productivity is given by:

Cov(P#, PP)
\/Var PA \/Var PB

Sign. The sign of the correlation is driven by the sign of the numerator, which expands as follows:

Corr(P#, PP) =

Cov(PA, PP) = 0% - Var(kS) 4+ 0c0p - Cov(kS  kP) + 004 - Cov(kS k) 4+ 0405 - Cov(k, kD)

ARRAL) AR (2

Each term captures a distinct driver of alignment across sectors:

. 92G . Var(/cl-G ): Contribution of general skills to alignment (always > 0)

* 0g0p - Cov(k:iG ,kP): Do individuals with strong general skills also tend to have strong industry-specific
skills?

* 0gl4- Cov(k:ZG ) k:f‘) Do individuals with strong general skills also tend to have strong academia-specific
skills?

* 0405 - Cov(k‘f‘, kP): Do sector-specific skills co-occur (positive) or trade off (negative)?
The first term, which reflects the contribution of general skills, is always non-negative. It pushes the correlation
up when general skills are both important (high 65) and variable (high Var(k:iG )). The second and third terms
capture whether individuals with strong general skills also tend to have strong sector-specific skills. If general
and sector-specific skills positively co-occur, these terms are positive and increase correlation. However, if
general skills are orthogonal or inversely related to one sector’s skill, these terms may reduce alignment. The
final term is particularly important: if individuals tend to specialize (i.e., those who are strong in one sector’s
specific skills are weak in the other), then Cov(k;“, kP) is negative, and the last term pulls the correlation down.
This means that even if general skills are valued, the overall correlation can be low or negative if sector-specific
skills are negatively related.

Magnitude. The overall magnitude of the correlation also depends on the denominator, which captures the
standard deviations of productivity in each sector. The variances are given by:

Var(P) = 6% - Var(kS) + 6% - Var(k{) + 20604 - Cov(k¥, k)
Var(PP) = 0% - Var(k¥) + 0% - Var(kP) 4+ 2005 - Cov(kS, kP)

)

An increase in the denominator can dilute the correlation when the variation in each sector is driven by
components that don’t co-move across sectors (i.e., when the numerator does not increase at the same time).
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This occurs, for instance, when productivity in each sector is heavily influenced by sector-specific skills that
vary widely across individuals. In this case, the denominator increases through 62 - Var(kf) and 6% - Var(k?).

If sector-specific skills are positively correlated (Cov(k:f, le ) > 0), the correlation remains positive but is

diluted. If they are negatively correlated (Cov(k, kP) < 0), the correlation is pulled toward zero.

(R
Special cases.
* If only general skills matter, then:

Corr(P, PE) =1

* If only sector-specific skills matter, then:

0405 - Cov(k3, kD)

10"

\/ Var(PA) - \/ Var(PP)

and the sign of the correlation depends entirely on how sector-specific skills co-vary within individuals

Corr( PA PB
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Appendix D Marginal Treatment Effects (MTE)

Estimating MTE allows to relate treatment effect heterogeneity to individuals’ observed and unobserved propen-
sities to join the private sector. The MTE captures the treatment effect for individuals at a given value of this
propensity, enabling the estimation of a distribution of treatment effects across individuals. From the MTE, we
can recover the LATE (and other key estimands such as the ATE or the ATT) by computing weighted-averages
of the MTE. Importantly, I can decompose this treatment effect into potential outcomes using the separate
approach (Grennan et al., 2024). Using a proxy for productivity as an outcome, this means that I can recover
an empirical proxy for my main parameters of interest: PZ-A and PP. The MTE can be modeled as part of the
generalized Roy Model (see Andresen (2018) for a more extensive discussion).

Model — 1 follow the generalized Roy model and assume that each individual has two potential outcomes, one
in each sector: o '
P/ =Pi(X;)+v], je{A B}

where ﬁ(XZ) captures the component of productivity explained by observable characteristics X;, and I/g
captures unobserved determinants of productivity in sector j. The selection equation of the generalized Roy
model is written as:

{j(i) = B} = 1{P(Z;, X;) > Up,}

with 1{j(i) = B} equals 1 if individual 7 joins sector B (the “treatment”). P(X;, Z;) is the propensity score,
i.e., the probability of entering sector B based on observed covariates X; and an instrument Z;. Up, is an
unobserved resistance (e.g., distaste for working in sector B) assumed to be uniformly distributed between O
and 1. Individuals with lower values of Up are more likely to join sector B compared to individuals with higher
values of Up (they have a lower distaste).

At any given value of the propensity score p = P(X;, Z;), individuals observed in industry must have
Up, < p, while those observed in academia must have Up, > p. Specifying some function for the conditional
expectations of the error terms allows me to use the observed outcomes of treated and untreated individuals to
estimate the following conditional expectations of P/* and PP:

* E[PP|X; = x,j(i) = Bl = af1 + E[vf'|Up, <pi) = 261 + K1(p;)

« E[PAX; =x,j(i) = A = 2B + E[V|Up, > pi] = 280 + Ko(pi)

Based on the functional form assumptions chosen for K7(p) and K((p), we can recover marginal potential
outcomes, i.e., expected productivity at a specific value of unobserved resistance:

s E[PB|X; =z,Up, = ]

« E[PAX; =2,Up, = u
Taking the difference yields the Marginal Treatment Effect (MTE):
MTE(z,u) = E[PP — PA|X; = 2,Up, = ]

The MTE represents the treatment effect for individuals with observable characteristics « and latent resistance
level u. It captures heterogeneity in treatment effects arising from both observed and unobserved factors.

Predictions - An advantage of the MTE estimation approach is that the estimates can be combined with the
data (i.e., individuals’ observables and realized sector) to derive the expected response to treatment E[PZ-B —
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PiA|Xi, D;, p;] for any individual in the data with observables X, sector joined D and propensity score p. This
allows me to calculate individual-level expected treatment effects and importantly potential outcomes:

D4 _ .
BIPP|X:, Diypi) = afy + 5K () ®

- M

A pi — D;
E[P{|X;, D, pi] = xBo + ———Ko(pi) )

7
EIPB _ PAIX. D.pl = 2 _ MI( . 1
[ 7 ) ’ ) 7p] _xz(ﬁl BO) + (pz) ( 0)
pi(1 —p;)

with K1 (p;), Ko(psi), K (p;) are functions of the propensity score. Equation 8 represents individual i’s expected
productivity in sector B and will be my empirical estimate for individual ¢’s productivity in industry. Equation
9 represents individual i’s expected productivity in sector A and will be my empirical estimate for individual
1’s productivity in academia. Equation 10 is the difference between Equation 8 and Equation 9 and represents
the difference in individual i’s expected productivity in sector B vs sector A.

Assumptions - The assumptions needed for the calculation of the MTE are the same as for the LATE: relevance,
exclusion and monotonicity. In theory, it is possible to estimate MTE with no further assumption. However, this
requires full support of the propensity score in both the treated and untreated states for all values of X which
is rarely feasible (Andresen, 2018). I follow the literature and further assume additive separability between
the observed and unobserved components (Carneiro et al., 2011; Cornelissen et al., 2016). While this MTE
framework is more restrictive than the TSLS one, it allows me to bring more nuance into treatment heterogeneity
and the pattern of selection. MTE can be estimated through the local IV or the separate approach. I use the
latter because it allows me to estimate potential outcomes, which are my main parameters of interest.

“Note that the separability assumption remains much less restrictive than a joint normal distribution of (U4, U, Up) as
assumed by traditional selection models (Andresen, 2018).
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Appendix E Sector Choice

I present here the full model of sector choice that allows individuals to change sector over their career. Let
individuals be indexed by ¢ and time be indexed by ¢ € (0,7"). There are 2 sectors in the economy: indus-
try, indexed as I and academia, indexed as A. I assume for simplicity that I observe a unique generation of
individuals so that ¢ can also be conceptualized as years of experience. Each individual works between t = 0
and t = T and is characterized by a vector j(i) representing the sectors she works in during each time period:
J(@) = (jo(7), j1(2), ..., jr(7)). For clarity, I will use j instead of j(¢) in the equations that follow, but the reader
should keep in mind that j is individual-specific. j = (I, I, ..., I) for individuals who spend their whole career
in industry and j = (A, A, ..., A) for individuals who spend their whole career in academia, but individuals are
allowed to change sector during their career. I am interested in j, the sector where individuals start their career
after graduating form their PhD.

Define Wijt the earnings of individual 7 at time ¢ in sector j; € (I, A) at time ¢. We can decompose Wi]; into
a sector-mean and an individual-specific component:

Wit = Wi+l (11)

with Wtjt the average earnings in sector j; for individuals with experience ¢ and (5? an individual-specific
component. The utility u* of individual 7 at time ¢ who works in sector j; equals:

_ it Jt Jt
=W 40" + ¢
with 02 * individual 7’s taste for sector j; and 5{’5 some noise. I model individual ¢’s utility of starting her career

in sector jo € (I, A), called Uz-jo, as a function of the sum over her career of her expected (discounted) earnings
and an error term 9? 0.

Uz'jO_ZP [ul" | jo]
t=0
=D P EW/ +6] +al" | jol

ot (E W} | jo] + E [67] jo])

ot (E W] + 67 | jo] +E [07] jo)) (12)

T

t=0

T

t=0

T  — _— .
=30 (e = 1G0) W] +80) + plic = ALjo) (Wi +6%) + B8] jo])

t=0

T —_— —_— .

>0t (Pl = i)W +81) + (1= p(Ge = 1jo)) (W +67) + B (6] jo])

t=0

T — — —_— -

>0 (2 = i) (W] +6! = WA = 62) + W + 33 + E 67| jo))

with p(j; = I|jo) (resp. p(j: = Aljo)) being the probability that individual ¢ works in industry (resp. academia)
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at time ¢ given that ¢ started her career in sector jo.

Individual ¢ starts her career in industry iff :
jo(iy =1 <= U -U*>0
T
= 3o (06 =Tlo = 1) = e = Tljo = AW +8] — W& —6) (13
t=0
+E (0] jo =11~ E 6] jo = A]) >0

Because this equation includes the difference in unobserved productivity parameters 52-1 — 5;4, the sorting of
individuals at graduation is not random.
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Appendix F  Selection on gains vs selection on level

I detail here the difference between selection on level and selection on gains and how they might be correlated
with each other.

The utility function of individual ¢ in sector j is Uij = BZWZJ + «;1{j = industry}, where «; captures
individual ’s preference for industry relative to academia and (; reflects sensitivity to earnings. Wf can
be decomposed into I/Vl.j = Wi+ 5? where W/ captures the part of earnings explained by observables
and 65 captures the part of earnings related to unobservable components. Individual ¢ joins industry iff
ﬁz(W—W) + ﬁz(éf — (5{4) 4+ a; > 0.

The first selection mechanism is selection on gains which refers to the value of the difference 5{ — 5{1 and
influences which sector individuals choose at graduation. Individuals with higher values of 6! — ¢! have more
to gain by going to the private sector and are thus more likely to select into that sector. The second selection
mechanism refers to selection on level which is linked to the values of § and §'. Consider two individuals
identical on observable characteristics and with the same gains 5{ — 5;-4, but assume that individual 1 has higher
level values of 6/ and 6;! compared to individual 2. Because earnings are the sum of a sector-mean (common
to individuals 1 and 2) and an individual-specific component (higher for individual 1), individual 1’s potential
earning outcomes are higher than individual 2’s potential earning outcomes. While the sector selection equation
is only linked to 67 — 624, this difference might be correlated with the levels §! and 6;4 except if we assume
constant treatment effects. To see that, let’s derive the conditions under which the difference and the levels are
uncorrelated:

Cov(s! — 644, 61)

107

Cov(s] — 64,64

7 [AER

0
0

<~
Var(s!) — Cov(62,61) =0

Cov(6!,62) — Var(61) =0

<~
Cov(64,67) = Var(6!) = Var(s#)
<~
Cov(d, 1) Var(sh)

=1

\/Var(di[)Var(ézA) N \/Var(éil)Var(ézA)

This implies a linear relationship between &/ and 5

67 = a + b3
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with a and b some constant. Plugging back into the initial conditions:

Cov(sF — 62, 67)

107

Cov(6! — 6,6 =0

0

<~
Cov(a+ b — 614,60y =0
Cov(a + b — 614,62 =0
<~
Cov(a+ (b—1)6,60) =0
Cov(a+ (b—1)62,64) =0

—
(b—1)Cov(58,61) =0

177

(b—1)Var(sd) =0

which implies that b = 1 or 6/ and 6:! being constant. In both cases, this implies that the difference 5 — 52 is
a constant.
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